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Session 1

Introduction to R

Commands

setwd save.image ls quit rm load
? example help.search help.start class ->,<-
c matrix list data.frame as.* attributes
runif cbind rbind factor levels sample
boxplot dist function print assign seq
rep sample return rnorm rpois source
library invisible

1.1 R Basics

R is an open source statistical programming language. It is becoming a standard for statistical
analysis in biology. R is primarily a programming language. The is one of the main advantages
that it has over other statistical packages. It is rare for scientists to use off-the-shelf statistical
tests today. Our data rarely conform to the assumptions of classical tests, and computer intensive
methods allow for more complex inferential models. As a result, inferential models are often unique
to the data. The flexibility of a programming language combined with a the availability of many
different functions relating to probability and statistics makes it very easy to build such models in
R.

1.1.1 How R Stores data

Working with R is unlike working with most software we use on a day to day basis. Modern software
typically employs a multiple document interface to work with data objects. That is, data are saved
on the hard disk and multiple pieces of data can be opened simultaneously in separated windows
(think documents in MS Word or worksheets in MS Excel). Data are manipulated using mouse
clicks and or short commands.

R was developed out of the S language which was originally written in the early 80’s, long
before windowed interfaces were available. It was developed to be used on a terminal that has
only a single window and only accepts command typed onto the screen, rather than mouse clicks.
Though Graphical Users Interfaces (GUIs) have been built for R today, it still it’s terminal feel. A
R session consists of commands entered onto the command line.
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R Stores its workspace in RAM

It is important for R users to understand the different ways that computers interact with data, and
where data is stored during an R session. Distinguishing between RAM and hard disk storage is
vital.

Computers today contain between 512MB and a few GB of Random Access Memory (RAM).
This memory typically resides on cards that plug directly into the motherboard of the computer.
Random Access Memory is an extremely fast but temporary (volatile) mode of storage. When a
program starts in your operating system, the commands necessary to make the program run are
read from the hard disk into RAM so that the commands can be read quickly and the processes
executed by the CPU. As particular bits of data are needed, they are read from the hard disk and
placed in RAM. When these bits are no longer needed, they are either saved to the hard disk by
the program or deleted from the RAM. When the program is terminated, all the RAM occupied
by the program is released.

Most software today keeps a copy of the working data stored permanently on the hard disk and
only places bits of data into RAM as they are needed. This minimizes data loss if the program
crashes. R is different, however, in that all the commands and data are stored in RAM during the
entire session unless the user explicitly exports the data to a hard storage location. The upside
of this is that calculations performed on the data are extremely fast. There are two downsides to
having data stored in RAM during a work session. First, if the program crashes all data that has
not been saved explicitly is lost. The second downside is that the size of data that can be loaded by
R is limited to the amount of RAM available on the computer. On 32-bit systems (e.g. Windows
XP), this means that the maximum size of all the data in an R workspace is roughly 2GB. 64-bit
systems overcome this limitations (e.g. Mac, *nix) because their upper limit of available RAM
is on the order of terabytes. Even with 64-bit systems, however, you can’t store more data than
you have RAM. So, for large phylogenetic and spatial data-sets, the platform of choice is likely a
Macintosh with as much RAM as you can afford.

The R working directory

When R starts, it chooses a working directory. It looks for any .RData file (see below) in this working
directory and loads the data from this file into the workspace. The workspace is an abstract concept
that refers the data stored in RAM for a particular R session. During an R session, the working
directory is default path to which R looks for any external input. So, if you read in data from a text
file, R looks for the named file in the working directory unless you have specified the full path to
the file. By default the working directory in windows installations of R is the installation path of R
(typically "C:\Program Files\R\R version\bin”). On Mac and *nix systems the default working
directory is your home directory (~).

It is usually more convenient to set the working directory for a particular analysis to a unique
folder. Create a folder for each analysis you perform. In Windows systems you can create a shortcut
in this folder to the R executable. Set the Start In property of the shortcut to be the working folder.
Then, R can be started in the working directory by double-clicking on the shortcut.

The .Rdata file

The permanent storage of workspaces is done with a binary file named .RData. When you quit
an R session (quit()), you are prompted to save the workspace. If you reply yes, then R stores
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its current workspace in a .RData file on the working directory. When you start R again in this
directory, the data that was saved is automatically restored. If you want to restore a particular
.RData file during a session, you can use the command load("path to .RData”) There is nothing
special about the filename except that R looks for the file named .RData by default when it starts.
So, you could store workspaces with any name you choose and just use the load command to put
them in the current R session.

The .RHistory file

When R exits, the user is prompted to save the data. This includes not only the .RData file, but
also an .RHistory file. The .RHistory file is simple a text file containing all the commands that
have been executed for that particular R workspace. Again, when R starts it looks for a .RHistory
file to load into the session. The commands in this history can be accessed in the File menu on
the GUI, or sequentially recalled by pressing the up-arrow at the command line. As with .RData
a particular history file can be saved under a different name and recalled later during another R
session using the commands savehistory and loadhistory.

1.1.2 A Typical R Session

As outlined above, you begin a typical R session by staring R in the working directory of the analysis
you want to perform. This working directory should contain all the external data that you might
need during the R session (e.g. Excel workbooks, shapefiles). When you finish your first session
in this directory, a .RData and .RHistory file will be created. It is important to remember that
while you are working in R, the objects you create are not stored permanently on the hard disk.
This only occurs when the .RData is updated on exit or when you explicitly save the workspace
from the command line.

The prompt and line continuation

The command line begins with the character >. You may type commands on this command line
and execute them by pressing Enter. R ignores whitespace (e.g. tabs, spaces, newlines), so if the
line you execute does not contain a full command (i.e. there is an open parenthesis or bracket) the
command entry is continued on the next line. Each continuation line is prefixed with the character
+.

Escaping command execution

At any time during the typing or execution of a command you may signal a break. In the GUI
version of R this is done using the Esc key. In terminal versions of R, you use the standard escape
sequence for the terminal. C-c in Mac and *nix, C-c C-c in Emacs.

Scripts and External Data

R can read commands not only from the keyboard but also from text documents. These documents
simply contain the commands to execute (without the > character that is present at the command
line) and they may be sourced into the current session (See 2.2). Commands are executed sequen-
tially, just as they are written. The standard extension for R scripts is .r, though R can read any
type of standard text file regardless of the extension.
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R can also read data from external files. These data will nearly always be in some tabular form
with column headings and values in rows separated by delimiters. For people who don’t use , as
a delimiter for decimal places (e.g. most US researchers), the best format for data storage is as a
comma-separated values file (*.csv). These files can be read using the command read.csv. Tab-
delimited files are common as well, though there are frequently problems with this method because
the default function for reading tab delimited files, read.table, actually recognizes any whitespace
as a delimiter. So, if there are any strings, such as column headers or categorical variables that
contain spaces, R attempts to recognize each word as a separate field. This usually results in an
error. This behavior can be overcome by specifying delimiters explicitly with the argument delim
in read.table. Any character can be a field delimiter.

Saving your work

R does not store your work as you go. If MS Word crashes while you are writing a document, you
can usually recover it the next time you start Word. If R crashes while you are working on the
command line, everything you have done for that session is lost. The only data that persist are
stored in the .RData file from your previous session.

There are two methods for preventing this kind of data loss, and you should probably use
both. The first is to frequently save your R workspace while you are in your R session using the
command saveWorkspace(). The second is to write all of your commands, from importing the
data to generating final output, in script files. If you ever lose your data, you can just execute the
commands that you have saved to create your workspace anew. This latter method is by far the
safest way to make sure you don’t lose any of your work, and is just good programming practice
in general. You should strive to write scripts that take you from raw data to output in a minimal
number of steps.

An R Workspace Exercise

Below is a quick set of exercises to help you understand explicitly how an R session works and how
R stores data.

1. Create a folder to store your analysis.

mkdir -p ~/RCourse/day1hw

2. Start R

3. Change the working directory of R to your analysis folder using either the GUI or the com-
mand line (setwd("pathtofolder"))

> setwd("~/RCourse/day1hw")

4. Create a vector containing the integers 1 through 5 and assign it to a symbol.

> v1 <- 1:5

> v1
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[1] 1 2 3 4 5

5. Save your workspace

> save.image()

6. Create a vector containing the integers 6 through 10 and assign it to a symbol.

> v2 <- 6:10

> v2

[1] 6 7 8 9 10

7. Save a backup of your workspace in a different file

> save.image("Backup.RData")

8. List your workspace.

> ls()

[1] "ctl" "group" "height" "levs" "light"
[6] "light2" "lm.D9" "lm.D90" "lv" "mat1"
[11] "mat2" "mat3" "opar" "out.var" "popWeights"
[16] "resample" "sample.df" "sampleDf" "smpWeights" "smpWeightsDf"
[21] "tmp" "tmp.fun2" "tmp.fun3" "tmp.fun4" "tmpDist"
[26] "tmpNames" "tmpWeights" "tmplist" "trt" "v1"
[31] "v2" "weight" "x" "y"

9. Create a vector containing the integers 11 through 15 and assign it to a symbol.

> v3 <- 11:15

> v3

[1] 11 12 13 14 15

10. Quit R without saving your workspace.

> quit("no")

11. Start R again.

12. List your workspace. Note what objects it contains.

> ls()

character(0)

13. Load your backup workspace into R.
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> load("Backup.RData")

14. List your workspace. Note what objects it contains.

> ls()

[1] "ctl" "group" "height" "levs" "light"
[6] "light2" "lm.D9" "lm.D90" "lv" "mat1"
[11] "mat2" "mat3" "opar" "out.var" "popWeights"
[16] "resample" "sample.df" "sampleDf" "smpWeights" "smpWeightsDf"
[21] "tmp" "tmp.fun2" "tmp.fun3" "tmp.fun4" "tmpDist"
[26] "tmpNames" "tmpWeights" "tmplist" "trt" "v1"
[31] "v2" "weight" "x" "y"

15. Quit R, saving your workspace.

> quit("yes")

16. Start a text editor and open the .RHistory file in your working directory.

1.1.3 Getting help

Once you master the basics of the R language, you open yourself to a wealth of information and
statistical algorithms. The obstacle to efficient analysis, then, becomes finding the right information
to match your analysis and massaging your data into a form that can be analyzed by the packages
you downloaded. While it’s not possible in every situation, you should do your best never to
reinvent the wheel. Open source software such as R has a long history of providing extensive help
online in the form or users groups and listservs. R also provides on-board help documentation for
commands

?

If you want to look at the help pages for a particular command, you simply type ?command.

example

At the bottom of most R help pages are a series of commands the provide examples of how to
use the documented command. You can execute these examples from the R command line using
example(command).

> example(lm)

lm> require(graphics)

lm> ## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
lm> ## Page 9: Plant Weight Data.
lm> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
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lm> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

lm> group <- gl(2,10,20, labels=c("Ctl","Trt"))

lm> weight <- c(ctl, trt)

lm> anova(lm.D9 <- lm(weight ~ group))
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.6882 0.6882 1.4191 0.249
Residuals 18 8.7292 0.4850

lm> summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept

Call:
lm(formula = weight ~ group - 1)

Residuals:
Min 1Q Median 3Q Max

-1.0710 -0.4937 0.0685 0.2462 1.3690

Coefficients:
Estimate Std. Error t value Pr(>|t|)

groupCtl 5.0320 0.2202 22.85 9.55e-15 ***
groupTrt 4.6610 0.2202 21.16 3.62e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

lm> summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical
Min. 1st Qu. Median Mean 3rd Qu. Max.

-7.772e-16 -3.608e-16 0.000e+00 -1.110e-17 0.000e+00 3.220e-15

lm> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

lm> plot(lm.D9, las = 1) # Residuals, Fitted, ...

lm> par(opar)
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lm> ## model frame :
lm> stopifnot(identical(lm(weight ~ group, method = "model.frame"),
lm+ model.frame(lm.D9)))

help.search

If you do not know the specific command name, but know the type of analysis you wish to so, you
can try searching all of your installed R packages for a help file that contains the keywords of your
analysis:

> help.search("Moran")

help.start()

If you would like to browse all the R documentation installed on your system you can open them in a
web-browser using help.start(). To find a particular command you need to navigate to Packages,
then look under the package you want to browse. You can also find general R information here like
the R Programming Guide and the R Syntax Definition.

CRAN

The Comprehensive R Archive Network (CRAN: cran.r-project.org) is the project responsible
for mirroring R binaries and packages at various locations throughout the world. They have links
to a Wiki and user forums. Typically, if you have a problem getting something to work in R after
you’ve looked at the standard documentation you should do a web search naming your problem
and appending the keywords CRAN and R.

1.1.4 R Packages

R itself is simply a programming language. If that were all that R could do, it would just be a
tiny speck in an ocean of similar programming languages. The real power of R is contained in the
contributed packages written by people like you who want to make their hard work available to
everyone else. There are over a thousand R packages, and one of the biggest challenges you will
face in doing analysis in R is choosing the right package for the job.

You can see a list of all available packages and their descriptions at cran.r-project.org. You
can install R packages from the GUI or simply using the command install.packages("packagename").
You will be asked to select a repository from which to download. Repositories closer to you will
likely have faster downloads, though for US researchers the fasted downloads nearly always come
from Berkley (repository CA1).

CRAN Task View

Wading through a thousand packages to find the one that suits your needs is an enormous time
waster. Recently, CRAN has added some functionality to its website that provides a shortcut for
choosing packages. The link from the website is Task Views. In task views the R packages are
separated into disciplines such as Econometrics and Environmetrics. Each task view provides a
vignette that summarizes the most important packages for standard analyses in that discipline.
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1.2 Objects

Everything in R is an object. Data are objects. Functions are objects. This is a distinction from
truly object-oriented programming languages, where objects contain methods, and functions may
not have an object associated with them. You can view a list of all the objects in your workspace
using the ls command.

> load("objectExample.RData")

> ls()

[1] "ctl" "group" "height" "levs" "light"
[6] "light2" "lm.D9" "lm.D90" "lv" "mat1"
[11] "mat2" "mat3" "opar" "out.var" "popWeights"
[16] "resample" "sample.df" "sampleDf" "smpWeights" "smpWeightsDf"
[21] "tmp" "tmp.fun2" "tmp.fun3" "tmp.fun4" "tmpDist"
[26] "tmpNames" "tmpWeights" "tmplist" "trt" "v1"
[31] "v2" "weight" "x" "y"

You can see the values held in an object by typing the object name at the command line.

> x

[1] 1 2 3 4 5 6 7 8 9 10

In R, each object has an associated class. I describe the most important classes below. In the
above example there are 5 objects in the workspace. They are not all of the same class.

> class(x)

[1] "integer"

> class(y)

[1] "character"

Think of classes as drawers of different sizes and styles. If you have an organization task (in
this case placing data into objects) you look through the different drawers and pick the one that is
the right size and shape for the things you want to store. Choosing the right drawer is important,
because it controls how easy it is for you to get your data back, and how easy it is to work on it.

Objects that are stored in a workspace are associated with a symbol. A symbol can be thought
of as the name of an object. The command to assign a symbol is a two character sequence that
looks like an arrow, ->. Assignment of an object to a symbol can occur in any order. symbol<-object
and object->symbol are both valid statements.
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1.2.1 Vectors

The simplest R object is a vector. It is a 1–dimensional, ordered container for one kind of data.
These data could be numbers: (1,5,7,9,10). They could be text (”how”,”now”,”brown”,”c. They could
be a series of binary (yes/no) values: (TRUE,FALSE,TRUE,TRUE). The command for entering
(also known as concatenating) such a sequence is c().

> c(T, F, TRUE, FALSE)

[1] TRUE FALSE TRUE FALSE

> c(1, 2, 3, 4)

[1] 1 2 3 4

> c("hello", "world")

[1] "hello" "world"

We can perform elementary math operations like addition and subtraction on the variable.

> tmp <- c(1, 3, 4, 5, 4)

> tmp + 2

[1] 3 5 6 7 6

You’ll notice that 2 was added to each value in the vector. This is the main advantage of
choosing the right ”drawer” for your data. You can perform operations simply and quickly across
the entire dataset, (or a specific subset of it as we’ll see later).

The : operator generates an integer sequence from the first value to the second value. It
works for negative values as well, and you can use parenthesis to control the output (in this case
parentheses are used for evaluation order like in typical mathematics)

> 1:5

[1] 1 2 3 4 5

> -1:5

[1] -1 0 1 2 3 4 5

> -(1:5)

[1] -1 -2 -3 -4 -5

12



Subsetting

To get a specific element a vector we use square brackets with the index of the vector element

> tmp

[1] 1 3 4 5 4

> tmp[1]

[1] 1

> tmp[2]

[1] 3

We can retrieve multiple elements from a vector using a sequence of indices.

> tmp[c(1, 2, 3)]

[1] 1 3 4

> tmp[1:3]

[1] 1 3 4

We can also use logical vectors that are the same length as the sub-setting vector.

> tmp[c(T, T, T, T, F)]

[1] 1 3 4 5

> tmp > 2

[1] FALSE TRUE TRUE TRUE TRUE

> tmp[tmp > 2]

[1] 3 4 5 4

> tmp > 2 & tmp < 4

[1] FALSE TRUE FALSE FALSE FALSE

> tmp[tmp > 2 & tmp < 4]

[1] 3

Logical sub-setting is a common task and it pays to spend a little extra time understanding
exactly how it works.
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1.2.2 Matrices

Most often, scientific data come in the form of multiple vectors of similar length that are related in
some way. For instance, you may collect both temperature and growth rate for a series of plants
at different locations. It is more appropriate to combine such vectors into a matrix in which the
rows correspond to locations or replications and the columns represent the variables you collect.
The matrix function is meant to do just that. It coerces a vector of data into a 2–dimensional
container.

> matrix(1:10, nrow = 2)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

The command above took the vector 1:10 and fit it into a matrix of 2 rows. You’ll notice that
the vector was placed into the matrix column by column. Another way to say this is that R by
default always iterates across rows first, then columns. You can change that default behavior with
the argument byrow.

> matrix(1:10, nrow = 2, byrow = T)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10

In the previous two commands I specified a matrix using one vector and one dimension of the
vector. I could just have easily specified both dimensions and let R fill up any empty spaces.

> matrix(1:10, nrow = 2, ncol = 10)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 3 5 7 9 1 3 5 7 9
[2,] 2 4 6 8 10 2 4 6 8 10

You can extend matrices to more than two dimensions using the array function. We’ll not go
over that here because the operations on arrays of more than two dimensions are identical to those
of matrices.

1.2.3 Lists

A list and a vector are virtually the same thing with one exception. A vector must contain all the
same data type in every slot. A list can have any data type in each slot. The great thing about
lists is that they can be containers for containers and be nested infinitely.

> tmplist <- list(c(2, 4, 6, 8), c(1, 1, 1, 1, 1), matrix(1:10,

+ nrow = 2), c("hello", "world"))

> tmplist
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[[1]]
[1] 2 4 6 8

[[2]]
[1] 1 1 1 1 1

[[3]]
[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

[[4]]
[1] "hello" "world"

You can access the components of a list using double square brackets [[]]. Unlike lists, you
can’t access multiple components using vectors of indices.

> tmplist[[1]]

[1] 2 4 6 8

> tmplist[[1:2]]

[1] 4

1.2.4 Dataframes

The most frequently used object type is a dataframe. It is a 2–dimensional container like a matrix,
but unlike a matrix, each column can have a different data type. Most often the rows of a data
frame are the individual observations of a study. The columns are the covariates and responses for
each observation. Dataframes may be created from a matrix or may be created column by column.

> as.data.frame(matrix(1:10, nrow = 5))

V1 V2
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

> data.frame(resp = 1:10, expl = sample(c(T, F), 10, replace = T))

resp expl
1 1 TRUE
2 2 FALSE
3 3 FALSE
4 4 TRUE
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5 5 FALSE
6 6 FALSE
7 7 TRUE
8 8 FALSE
9 9 FALSE
10 10 FALSE

Dataframes have 3 attributes: names rownames, and class.

> tmp <- data.frame(resp = 1:10, expl = sample(c(T, F), 10, replace = T))

> attributes(tmp)

$names
[1] "resp" "expl"

$row.names
[1] 1 2 3 4 5 6 7 8 9 10

$class
[1] "data.frame"

You can access the columns of a dataframe by name and by index.

> tmp$resp

[1] 1 2 3 4 5 6 7 8 9 10

> tmp[, 1]

[1] 1 2 3 4 5 6 7 8 9 10

> tmp[, "resp"]

[1] 1 2 3 4 5 6 7 8 9 10

Accessing objects by name also applies to any object that has a names attribute.

> tmp <- list(stuff1 = 1:5, nostuff = NA)

> tmp

$stuff1
[1] 1 2 3 4 5

$nostuff
[1] NA

> attributes(tmp)

$names
[1] "stuff1" "nostuff"

16



> tmp$stuff1

[1] 1 2 3 4 5

It is worth mentioning here two alternative ways to build dataframes and matrices: cbind and
rbind. Occasionally, you will have to piece dataframes together by binding columns which have
the same number of rows, or binding rows that have an equal number of columns. cbind binds
columns of a dataframe (or a vector) together that have the same number of rows. rbind binds
rows together that have the same number of columns. By default cbind and rbind create matrices,
but they have dataframe counterparts, cbind.data.frame and rbind.data.frame.

> mat1 <- matrix(1:10, nrow = 5)

> mat2 <- matrix(rnorm(15), nrow = 5)

> v1 <- runif(5)

> cbind(mat1, mat2, v1)

v1
[1,] 1 6 1.3760439 -0.9160760 1.7490382 0.1626130
[2,] 2 7 1.0254423 1.6323398 1.2115488 0.1959679
[3,] 3 8 -0.5859041 -1.1657121 -0.3591283 0.8027563
[4,] 4 9 0.6149840 1.5502385 0.2141133 0.6388274
[5,] 5 10 -0.4997532 0.9894213 -0.8717418 0.6971929

> mat3 <- matrix(rnorm(16), ncol = 2)

> rbind(mat1, mat3)

[,1] [,2]
[1,] 1.00000000 6.0000000
[2,] 2.00000000 7.0000000
[3,] 3.00000000 8.0000000
[4,] 4.00000000 9.0000000
[5,] 5.00000000 10.0000000
[6,] 2.12103668 -0.1092064
[7,] -1.05106551 1.1122826
[8,] 0.43801827 -0.6657890
[9,] -0.41328658 0.2108364
[10,] 0.26347346 -0.1528133
[11,] 0.07776033 -0.8213993
[12,] 0.14395873 1.6855975
[13,] 1.19290836 -0.5053494

1.2.5 Factors

The final container that we’ll discuss here is a factor. Factors are categorical variables. They are
stored just like vectors, but with and additional levels attribute.

> c("light", "shade", "light", "shade")
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[1] "light" "shade" "light" "shade"

> factor(c("light", "shade", "light", "shade"))

[1] light shade light shade
Levels: light shade

> tmp <- factor(c("light", "shade", "light", "shade"))

> levels(tmp)

[1] "light" "shade"

Factors can also be ordered. You should be careful to order your factors if an ordering exists
in the levels. This will cause analysis (e.g. plotting and regression) to be done in the correct order
rather than by the default which is alphabetical, and makes a difference for degrees of freedom in
regression procedures.

> height <- rnorm(30, c(10, 8, 6), 5)

> levs <- c("L", "M", "H")

> lv <- sample(levs, 30, replace = T)

> height

[1] 11.456598 13.282706 2.347772 14.508829 5.646261 13.707445 8.051463
[8] 6.377971 14.619579 9.801535 6.383039 10.593779 14.223488 4.891057
[15] 1.035119 14.405061 9.499780 1.141328 17.330403 9.938224 6.280072
[22] 3.748102 7.309500 3.433915 12.903078 1.627278 5.114657 6.780878
[29] 11.266248 5.790863

> lv

[1] "M" "M" "M" "M" "H" "L" "H" "M" "H" "M" "H" "L" "H" "L" "H" "L" "H" "H" "H"
[20] "M" "M" "M" "M" "L" "H" "M" "H" "L" "H" "L"

> light <- factor(lv)

> light

[1] M M M M H L H M H M H L H L H L H H H M M M M L H M H L H L
Levels: H L M

> light2 <- factor(lv, levels = levs, ordered = T)

> light2

[1] M M M M H L H M H M H L H L H L H H H M M M M L H M H L H L
Levels: L < M < H

One final note on factors is that the levels of the factor remain constant even if a particular
level doesn’t occur in a vector.

> light2[light2 == "L"]

[1] L L L L L L L
Levels: L < M < H
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Figure 1.1: B
oxplot illustrating the difference between unordered factors (top, sorted alphabetically) and

ordered factors (bottom).
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Session 2

Function and Script Basics

2.1 Functions

R is function-based. This is a distinction from other truly object-oriented programming languages,
which are class based. Nearly everything that is done in R is done through functions. Functions are
meant to receive data (in the form of arguments) perform some calculation or data manipulation
task, and return an output to the user. Often, we assign the output of a function to a symbol,
though this is not absolutely necessary.

> tmpDist <- dist(1:10)

> tmpDist

1 2 3 4 5 6 7 8 9
2 1
3 2 1
4 3 2 1
5 4 3 2 1
6 5 4 3 2 1
7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
10 9 8 7 6 5 4 3 2 1

In the above example, dist is a function. We sent it input (the vector 1:10) and it sent us
output which we stored in the symbol tmpDist. Were we to look at the documentation for the dist
function, we would discover that it calculates a pairwise distance matrix on the vector.

Functions are designed to be black boxes. You don’t have to see functions working. You just
call them up, send them data, and they work. This has two advantages for end users of R. First,
it’s easy for people to use code for different problems. For instance, if you created a function that
calculated the sums of squares from a vector of data, you could use that function in many different
contexts, from calculating variance to linear regression. Second, functions can be called from other
functions, allowing you to reuse your own code, to say, calculate the sums of squares for many
different pieces of data without having to type the code over and over.
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2.1.1 Basics

Functions are objects just the same as data are objects. When you list the objects in your workspace
there is no distinction between the two. If you want to see the definition of a function you enter
the name of the function (without parentheses) at the command just as you would a data object.

> dist

function (x, method = "euclidean", diag = FALSE, upper = FALSE,
p = 2)

{
if (!is.na(pmatch(method, "euclidian")))

method <- "euclidean"
METHODS <- c("euclidean", "maximum", "manhattan", "canberra",

"binary", "minkowski")
method <- pmatch(method, METHODS)
if (is.na(method))

stop("invalid distance method")
if (method == -1)

stop("ambiguous distance method")
N <- nrow(x <- as.matrix(x))
d <- .C("R_distance", x = as.double(x), nr = N, nc = ncol(x),

d = double(N * (N - 1)/2), diag = as.integer(FALSE),
method = as.integer(method), p = as.double(p), DUP = FALSE,
NAOK = TRUE, PACKAGE = "stats")$d

attr(d, "Size") <- N
attr(d, "Labels") <- dimnames(x)[[1]]
attr(d, "Diag") <- diag
attr(d, "Upper") <- upper
attr(d, "method") <- METHODS[method]
if (method == 6)

attr(d, "p") <- p
attr(d, "call") <- match.call()
class(d) <- "dist"
return(d)

}
<environment: namespace:stats>

To call a function you just type its name and follow it with parentheses. Parentheses delineate
the function arguments from other parts of R code (Parentheses, then have both a mathematical
and syntactical meaning in R). A function is defined to accept a sequence of arguments separated
by commas when it is called. These, arguments go inside the parentheses and may be named
explicitly using the syntax (argument=value) or are evaluated in the order in which the y appear
in the function definition. In our distance example above:

> dist(x = 1:10, method = "euclidean")

> dist(x = 1:10, "euclidean")
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> dist(1:10, method = "euclidean")

> dist(1:10, "euclidean")

all mean the same thing.
You can define your own functions using the function function (surprise!). In the function

definition, arguments in parentheses represent definition of the arguments rather than an input. If
you use the syntax argument=value, then value becomes the default value of the argument when the
function is called. You’ll notice above that the definition for the dist function has 4 arguments with
default values: method,diag,upper, and p. So, when we made our first call to dist: dist(1:10),
the input vector was assigned to the x argument and every other argument was assigned the default.

The body of a function is delineated by curly brackets {}. These are not necessary when
the function is only one statement long, but this rarely occurs. Inside the body of the function
arguments that were defined between the parentheses become symbols that have the value given
them in the function call. So, you can define a function with an argument x and then use x in the
body just as another symbol. When the function is called, x takes on the value that you assigned
it in the call.

Most function generate output. By default, R assigns the output of a function be the output
of the last statement executed before the }. This is not safe, however, and it is better to use the
return(return value) command to return objects from functions.

Occasionally, function are created for their side-effects rather than their return values. This
often the case with plotting function, and data export functions. In these cases you can use the
special function invisible()) as the return value. This suppresses even the NULL return value
that is the default for return()

2.1.2 Brackets: { ( [

It is easy for beginners to get confused with the different types of brackets that are used in R. Here
I provide a reference for distinguishing these delimiters.

parentheses: () Used in every function call (even if there are no arguments used). Function
arguments go in between the parentheses. Also used to determine the order of mathematical
operations.

square brackets: [] Used only for indexing and subsetting operations on containers.

double square brackets: [[]] Used for indexing lists.

curly brackets: {} Surrounds blocks of statements that should be executed together. These blocks
occur as the statements within a function, the statements to be executed in a loop (using the
command for), or conditionally executed statements (using the command if...else).

2.1.3 Nesting and Scope

Symbols in R are stored in environments. You main workspace environment has a special name,
.GlobalEnv. When you type ls() at the command line, the symbols stored in .GlobalEnv are
listed. When a function is called, a new environment is created specifically for this function.
Symbols created in this environment (as part of the command list in the function) last only as long
as the function is executed. Stated another way, the scope of symbols is specific to the environment
in which they were created.
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> tmp.fun <- function() {

+ x1 <- 2 + 4

+ y1 <- 10 + 6

+ print(x1)

+ return(y1)

+ }

> x1

Error: chunk 41 (label=scope)
Error in eval.with.vis(expr, .GlobalEnv, baseenv()) :
object "x1" not found

In the function above, we cannot access the symbol x from the command line because it was
released from memory when tmp.fun completed execution. The environment of the main workspace
.GlobalEnv is special in that it can be accessed from within any function.

> x <- 10

> tmp.fun2 <- function() {

+ y <- 10 + x

+ return(y)

+ }

> tmp.fun2()

[1] 20

Symbols that are defined in both a function and the .GlobalEnv are overwritten by the function
when the function is in scope.

> y <- 10

> tmp.fun3 <- function() {

+ y <- 11

+ print(y)

+ return(invisible())

+ }

> tmp.fun3()

[1] 11

If you wish for a symbol to be stored permanently in the .GlobalEnv from within a function
you can use the assign command.

> tmp.fun4 <- function() {

+ x2 <- 10

+ assign("out.var", x2, envir = .GlobalEnv)

+ return(invisible())

+ }

> tmp.fun4()

> out.var

[1] 10
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2.1.4 The most important data manipulation functions

There are a few function for generating vectors that are used very frequently. I outline them below.

seq Generate regular sequences. While the : is useful for generating integer sequences, there will
be many times that you want to generate regular sequences that are not necessarily increasing
integers.

> seq(1.5, 5, by = 0.5)

[1] 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

> seq(1.5, 5, length = 20)

[1] 1.500000 1.684211 1.868421 2.052632 2.236842 2.421053 2.605263 2.789474
[9] 2.973684 3.157895 3.342105 3.526316 3.710526 3.894737 4.078947 4.263158
[17] 4.447368 4.631579 4.815789 5.000000

rep Replicates values. You can generate vectors that are repetitions of particular numbers of
vectors.

> rep(1, times = 5)

[1] 1 1 1 1 1

> rep(1:2, times = 5)

[1] 1 2 1 2 1 2 1 2 1 2

> rep(1:2, each = 5)

[1] 1 1 1 1 1 2 2 2 2 2

sample It is often necessary to randomly sample from vectors. This can be a permutation, a
subsample with replacement, or a sub- or super- sample with replacement.

> sample(1:10)

[1] 6 4 3 7 2 1 9 10 5 8

> sample(1:10, size = 3)

[1] 6 8 1

> sample(1:10, size = 12)

Error: chunk 47 (label=sample)
Error in sample(length(x), size, replace, prob) :
cannot take a sample larger than the population
when 'replace = FALSE'
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> sample(1:10, size = 12, replace = T)

[1] 10 7 6 10 8 1 3 4 10 1 6 4

It’s easy enough to extend random sampling from vectors to random sampling of rows from a
dataframe using the ... argument, which we will discuss later, and the function nrow which
returns the number of rows in the dataframe.

> sample.df <- function(df, ...) {

+ smp <- sample(1:nrow, ...)

+ return(df[smp, ])

+ }

r* In addition to generating random samples, we also often want to generate random variates from
a specified distribution. R has many built-in probability distribution such as the Binomial,
Geometric, Poisson, Exponential, Gamma, Beta and the classic Normal distribution. If you
are unfamiliar with a particular distribution there is no better place to learn about it than
Wikipedia. To generate random variables from a probability distribution you simply type the
command rdistribution(size,param1,param2). For the normal distribution the two parameters
are the mean and the standard deviation. For the Poisson there is only one parameter (λ):

> rnorm(10, mean = 0, sd = 1)

[1] -1.65722007 -1.60250942 -0.47008351 -0.25618195 -1.48299646 -1.23027924
[7] 0.06924713 2.58444604 -0.18059833 -0.51707936

> rpois(10, lambda = 1)

[1] 3 0 0 2 2 2 1 2 1 2

In addition to generating random variates from all these distributions, you can also get the
probability density ddistribution, cumulative distribution pdistribution and the quantile func-
tion qdistribution for each distribution as well.

2.2 Scripts

Typing on the command-line is error prone and can be frustrating. Most users of R only type on
the command-line when they are testing short commands that they can easily type without error.
Barring those cases, commands are generally placed into text files and then read into R. These R
scripts can be read into R in at least 3 ways.

The first, and most straight–forward is simply to copy the lines of code from the text file and
paste them directly into the command line. Many R users do all their analyses in this way. There
are some weaknesses associated with this approach, though. First, you have to remember to execute
the commands in your text file in the proper order. Second, what is copied and pasted into the
command line is stored in the .RHistory file. This may not seem like a big deal, but if you were
copying a 50 line function over and over again, it would be difficult to backtrack through your
history to find other commands you might want to reference.
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The second way to read commands into R is only available when R is run in a particular GUI
interface. In R for both Mac and Windows you can open up scripts in a window of the R software.
There are click-able options to send lines, regions or entire files to the R command line. This process
does not send the commands into the history file.

The final way to send commands to R is through directly reading a text file at the command
line. This is done via the source command. This is preferred method of debugging R functions,
since it is the quickest to implement and the easiest to repeat. The example below sources a text
file to the R command line.

> source("sumsq.r")

2.3 Loading Packages

We have already discussed that one of the advantages of R is the abundance of packages writ-
ten for it, and that these packages may be downloaded through the GUI or by the command
install.packages. Downloading a package places it in the R install folder. It must be loaded
however, into a running R process in order to have access to its functionality. R only loads a few
packages by default when it boots. So, every time you restart R you need to load your packages
you again.

> library(MASS)

It is common to write library commands at the top of source files. Another option is to write
a source file that loads initially when R boots. When R boots, it looks for a file called .First and
sources this file. You can include your library commands in this file. As a side note, you may
also include a .Last file that is run when R closes.

2.4 Exercises

In this exercise you will simulate some field collected data (weights of animals from 2 populations),
and perform elementary descriptive analyses on the datasets.

1. Create a workspace for this analysis

2. Create a simulated datasets of weights from a normal distribution whose mean weight is 32g
and whose standard deviation is 5g.

3. Create a similar dataset with mean 10g and standard deviation 5g.

4. Put these into a dataframe with 2 columns (population and weight).

5. Calculate the sample mean and standard deviation for the total population and each individual
population.

6. Put all the data and outputs into a single list

7. Extra credit: Bootstrap confidence intervals sample means of each populations. Are they
different?
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Session 3

Getting Data into and out of R

About 80% of R analysis is getting data from a file on the computer into a format that is useful
for analysis on R. Most statistical analyses require few lines of code. Data manipulation, on the
other hand, represents the bulk of R code. In today’s lesson we concentrate on how to get data
into R, and the properties of well-formed dataframes. We also discuss different output tactics for
generating manuscript-ready figures and tables in R, and how best to encapsulate such functionality
in R scripts. There is an entire documentation module written on data import and export for R,
which is available from the HTML help (help.start()).

3.1 Importing data

Most scientific data is stored in one of three formats: text files, spreadsheets, and databases. R
can read and write data from any of these. Text files are often the easiest format to read and
write from, but they have disadvantages. First, most researchers do no enter data directly into text
files. They instead use forms on spreadsheets or databases to enter data. So, text files typically are
exported data from some other format. Spreadsheets and databases, on the other hand, have the
disadvantage that is not as straightforward to read and write from them as text files. In windows,
Object Database Connectivity (ODBC) protocols make this process easier, and we will learn how
to use these connections in R. But, for *nix and Mac systems text files are still the best way to go,
unless you have installed 3rd party ODBC drivers.

3.1.1 Importing text files

There are three main commands used for importing data into R from text files: scan, readLines,
and read.table. I address each of these in order.

scan

scan is used mainly to read in single vectors of data.

> cat("TITLE extra line", "2 3 5 7", "11 13 17", file = "vector.txt",

+ sep = "\n")

> scan("vector.txt", what = character(0))
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[1] "TITLE" "extra" "line" "2" "3" "5" "7" "11" "13"
[10] "17"

If no file is specified to scan it reads input from stdin which is your terminal. You can type in
values until you hit Enter twice. Using this protocol, you could read in a single column from an
spreadsheet by simply copying and pasting it into the terminal.

Scan has a few optional arguments that it shares with the more common read.table. The first
is the file argument. This is a character string that is the path to the data file. By default, R
looks in your working directory first for this file. You can also use connections (FTP and HTTP
URLs) as file names. So, you can download data directly from the Internet or another computer.

> scan("http://www.unc.edu/~toddjobe/RHttpEx.txt")

[1] 1 2 3 4 10 20 30 40 101 202 303 404

Reading data from the web is very handy. So, I have provided a function using some of the
commands we learned in the previous chapter that will generate a HTTP URL from my website
for downloading data.

> getHttp <- function(x, baseUrl = "www.unc.edu/~toddjobe") {

+ paste("http:/", baseUrl, x, sep = "/")

+ }

The second common argument is sep, which is a character vector of field delimiters. By default,
sep="" which means that all whitespace is counted as a delimiter.

> scan("http://www.unc.edu/~toddjobe/RHttpEx.txt", sep = "\n")

[1] 1234 10203040 101202303404

The final common argument that we will discuss here is skip which tells the function to skip
a certain number of lines at the beginning of the file. This is useful for files that contains multiple
lines of header information.

> scan("vector.txt", skip = 1)

[1] 2 3 5 7 11 13 17

3.1.2 readLines

readLines is very similar to scan, but it reads the entire line without consideration for delimiters.
Connections and stdin can also be used, so you can paste from Excel to readLines as well.

> readLines("vector.txt")

[1] "TITLE extra line" "2 3 5 7" "11 13 17"
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3.1.3 read.table and its variants

read.table is the most frequently used import command. It can read text files directly into
dataframes. You can think of it as a combination of scan which can delineate columns on a single
line, and readLines which distinguishes rows. As stated above, many of the optional arguments
to scan like file, sep, and skip, are present in read.table.

For the read.table examples we’ll be using a text file names “chickens.txt” which is space-
delimited file of chick weights by a variety of treatments. Here’s what it looks like.

> tmp <- read.table("http://www.unc.edu/~toddjobe/chickens.txt")

> tmp[1:10, ]

V1 V2 V3 V4 V5
1 prtntype prtnamt fshsolamt house weight
2 GN L L F 6559
3 GN L L S 6292
4 GN L H F 7075
5 GN L H S 6779
6 GN M L F 6564
7 GN M L S 6622
8 GN M H F 7528
9 GN M H S 6856
10 GN H L F 6738

> str(tmp)

'data.frame': 25 obs. of 5 variables:
$ V1: Factor w/ 3 levels "GN","SB","prtntype": 3 1 1 1 1 1 1 1 1 1 ...
$ V2: Factor w/ 4 levels "H","L","M","prtnamt": 4 2 2 2 2 3 3 3 3 1 ...
$ V3: Factor w/ 3 levels "H","L","fshsolamt": 3 2 2 1 1 2 2 1 1 2 ...
$ V4: Factor w/ 3 levels "F","S","house": 3 1 2 1 2 1 2 1 2 1 ...
$ V5: Factor w/ 25 levels "6249","6292",..: 25 6 2 17 13 8 9 22 14 10 ...

Notice that all the columns in this imported dataset are factors and that the column headings
were imported as rows in the dataframe. It is the default behavior of read.table to ignore column
headers. You can cause read.table to recognize column headers by using the argument header=T.

> tmp <- read.table("http://www.unc.edu/~toddjobe/chickens.txt",

+ header = T)

> tmp[1:10, ]

prtntype prtnamt fshsolamt house weight
1 GN L L F 6559
2 GN L L S 6292
3 GN L H F 7075
4 GN L H S 6779
5 GN M L F 6564
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6 GN M L S 6622
7 GN M H F 7528
8 GN M H S 6856
9 GN H L F 6738
10 GN H L S 6444

> str(tmp)

'data.frame': 24 obs. of 5 variables:
$ prtntype : Factor w/ 2 levels "GN","SB": 1 1 1 1 1 1 1 1 1 1 ...
$ prtnamt : Factor w/ 3 levels "H","L","M": 2 2 2 2 3 3 3 3 1 1 ...
$ fshsolamt: Factor w/ 2 levels "H","L": 2 2 1 1 2 2 1 1 2 2 ...
$ house : Factor w/ 2 levels "F","S": 1 2 1 2 1 2 1 2 1 2 ...
$ weight : int 6559 6292 7075 6779 6564 6622 7528 6856 6738 6444 ...

This time the columns import as expected, numeric columns are seen as numeric and factor
columns are seen as factors. Character strings within columns are automatically converted to
factors. If you want to override this automatic conversion you can use the argument as.is=T.

There are a few other problems associated with importing data using the defaults of read.table.
The first is what to do about missing data. Missing data in R is assigned a special symbol NA.
Given the default behavior of read.table, there is no way for missing data to be read correctly
unless that missing data has been assigned a specific value and the argument na.strings specified.
We have already discussed the issue of character strings with spaces in them acting as multiple
delimiters.

Fortunately, R provides higher-level functions that read specific types of text files, which over-
come these problems to a great degree. The first and most important is read.csv. read.csv is
identical to read.table except that sep="," and header=T. This is probably the safest way to
export and read text files in R. Of course the problem of multiple delimiters can still arise if the
character string that you are trying to import as factors contain , in them. Another common type
of text file format is tab-delimited. The function to read such files is read.delim. This is a good
alternative if you prefer not to use *.csv files.

One final extension to read.table is the ability to read directly from the clipboard. The
wrapper function for this is readClipboard. Using readClipboard you can highlight multiple
columns and rows in an Excel spreadsheet, copy them, and paste them into R.

Common problems reading text files

It is common for users to spend a lot of time looking at indecipherable errors when attempting read
in data from text files. Below, I outline some of the common pitfalls and their solutions.

Forgetting to read the header If you use read.table to import your text file, you must
explicitly set header=T in order for the data to be read correctly. Usually, forgetting to set header=T
will not result in a run-time error when you import the file. Instead, it is likely to show up when
you attempt to do some mathematical manipulation on what seems like a numeric column only to
discover that it is considered a factor by R. To avoid this error always look at the first few lines of
your imported dataframe and also look at its structure using str.
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Extra delimiters Occasionally, when you export a file from Excel into a *.csv or a tab-delimited
text file, Excel will add some delimiters for extra columns or rows. This can happen if you have a
value that you can’t see on one particular row, too many column headers, or a character string that
contains a field delimiter. This can also happen if you’ve opened the text file, edited it directly,
and you added some extra lines by accident. The error that you will receive in such cases could be:

Warning message:
In read.table(file = file, header = header, sep = sep, quote = quote, :
incomplete final line found by readTableHeader on 'tmp.csv'

To avoid this error, make sure that all cells in Excel which should not contain data are actually
clear. Also, do not edit a text file directly if possible.

3.1.4 Importing directly from databases

One of the most frequently used programs for storing data is Microsoft Excel. Unfortunately, R
does not natively read *.xls files, so I have added a section here on importing this type of file.
Most of R users circumvent this problem by saving an Excel worksheet as a *.csv or tab-delimited
file. It is quite easy, however, to import the raw *.xls file into R if you have ODBC enabled on
your windows machine. Most windows machines do. If yours does not and you have administrator
privileges you can add ODBC functionality by going to Control Panel->Add Remove Programs-
>Add Remove Windows Components. There are also ODBC extensions available for Mac and *nix
if you use those platforms.

Getting ODBC up and running on Windows is simply a matter of activating it as a windows
component. On Macs, however, you have to load the drivers for a particular data source (e.g.
Excel, Access). Unfortunately, these drivers are not free. You can download them for a small fee
($29.95 at the time of this writing) from Actual Technologies. The nice thing about using ODBC is
that users do not have to actually install the database software to read the database. So, assuming
you have the drivers, it doesn’t matter that MS Access isn’t available for the Mac, you could still
query an Access database if you had the ODBC driver.

You must have the RODBC package installed in R to import data via ODBC. Once installed
the code to import an Excel file is this:

> library(RODBC)

> channel1 <- odbcConnectExcel("myexcelfilename.xls")

> dataset <- sqlFetch(channel1, "worksheet name")

> odbcCloseAll()

The command odbcConnectExcel opens up a connection to a Excel workbook. You can view the
list of tables available on the connection using the sqlTables command. The sqlFetch command
will read in a table from the open connection as a data frame. When you are done reading in tables,
you can close the open connection using the odbcCloseAll() command.

Unfortunately, writing to Excel is a little more difficult than reading. R doesn’t have the
tabular formatting capabilities that Excel has. A work around for this problem is to use the ODBC
connection in Excel in addition to using them in R. R will export to *.csv just fine. Excel can
connect to *.csv data via ODBC. Using ODBC rather than just importing the *.csv means that
as R updates the *.csv it will automatically be updated in the Excel workbook. To generate
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formatted tables for publication you can use cell references that point from the *.csv file into a
well-formatted table.

The above example is just one of the many types of connections that ODBC offers. Using ODBC
you can connect to virtually any data storage format including all common database (e.g. Access,
Oracle, SQL Server, etc.). The database formats have good write capabilities, unlike Excel, so you
can send data to them directly from R. Also, the sqlFetch command allows for SQL statements to
be executed within the command. So, you can create a database query in R to pull piece of data
from a larger database that you are interested in.

34



Session 4

Formatting and Output

4.1 Well-formed data frames

Learning how to build a well-formed data frame is perhaps the most important skill to develop in
R. Fortunately, there is a simple test in Excel to determine if your data frame is well-formed. If
you can generate a pivot table for any combination of variables in your data set, then you will have
a well-formed data frame in R.

This means that no columns headings should form a meaningful sequence. For instance, if you
have nested samples, you should not have a response column for each nested subplot. Instead, you
should have one column for the response variable and one column for the scale of observation. The
same applies to multiple columns that might form a sequence of dates.

Frequently, the optimal format for recording data is not a well-formed data frame. Well-formed
data frames tend to have few columns and many rows with information in some columns repeated
frequently. If you can easily change your data into a data frame in Excel, do so. Most of the time,
however, it will be easier to import the data “as-is” into R and change its format in R. R will allow
automation of the process so that if your data ever changes (you should always assume that it will)
you can perform the necessary formatting again without trying to remember how you did it the
first time.

We’ll go through a small example now of generating a poor data frame and converting it to a
good data frame. Let’s assume that we’re measuring the height of plants in a greenhouse over 3
successive months. We generate a fake dataset such as this:

> dat <- data.frame(plantId = 1:5, Jan01 = rnorm(5, 10, 1), Feb01 = rnorm(5,

+ 20, 2), Mar01 = rnorm(5, 30, 3))

> dat

plantId Jan01 Feb01 Mar01
1 1 9.190147 22.50304 25.55897
2 2 10.360700 21.92445 29.15972
3 3 9.697200 20.90764 33.64665
4 4 10.960069 23.06336 33.62743
5 5 10.558849 17.51010 22.73288

This is a poorly formed data frame because it is difficult to analyze the change in height through
time in this form. Specifically, there is no way to perform a regression of height on time using the
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standard formula format y~x, because the explanatory variables must be single columns in the
dataset. We need date to be it’s own column and height to be its own column. I show here two
different ways to accomplish this task. The first I have designated as the brute force method. This
is shown here mainly to give you understanding what a well-formed dataframe looks like, and to
give you practice working with various vector manipulation functions such as unlist and rep. The
second method is more elegant, and takes advantage of some higher level manipulation commands.
In practice you will St the second method most often, but it is useful to know the brute force
method, just in case you data structures are more complex.

4.1.1 The Brute Force Method

Let’s focus on making the height column first. We want to turn the columns of height into a single
vector. There are two commands to do this in R and it is not necessarily intuitive which one to
use, so you have to experiment. The two options are unlist() and c(). unlist() is meant to do
exactly what it sounds like, take a list and remove the element distinctions, turning the list into
one big vector. In the case of this example unlist() works.

> unlist(dat[, 2:4])

Jan011 Jan012 Jan013 Jan014 Jan015 Feb011 Feb012 Feb013
9.190147 10.360700 9.697200 10.960069 10.558849 22.503036 21.924448 20.907641
Feb014 Feb015 Mar011 Mar012 Mar013 Mar014 Mar015

23.063358 17.510099 25.558973 29.159722 33.646649 33.627426 22.732877

You will notice that unlist turned the three height columns of the data frame into a single
vector with a names attribute which is just the column name of the data frame with a sequential
index appended. A very important thing to note is that the columns have been “unwound” by row.
The unlist command always iterates across rows first and then columns. This will be important
when we create our date column.

The command c() does not work for these data:

> c(dat[, 2:4])

$Jan01
[1] 9.190147 10.360700 9.697200 10.960069 10.558849

$Feb01
[1] 22.50304 21.92445 20.90764 23.06336 17.51010

$Mar01
[1] 25.55897 29.15972 33.64665 33.62743 22.73288

Instead, c turns the three columns of the data frame into a list with three named elements and
a vector of length 5 in each element. However, if the data had been in a matrix form, c would have
been the correct command, and unlist would have done nothing:

> unlist(as.matrix(dat[, 2:4]))
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Jan01 Feb01 Mar01
[1,] 9.190147 22.50304 25.55897
[2,] 10.360700 21.92445 29.15972
[3,] 9.697200 20.90764 33.64665
[4,] 10.960069 23.06336 33.62743
[5,] 10.558849 17.51010 22.73288

> c(as.matrix(dat[, 2:4]))

[1] 9.190147 10.360700 9.697200 10.960069 10.558849 22.503036 21.924448
[8] 20.907641 23.063358 17.510099 25.558973 29.159722 33.646649 33.627426
[15] 22.732877

As a rule of thumb, data frames use unlist and matrices use c, but it is best to test each one
out on a subset of your data first.

We can now store the unlisted vector of heights, and move toward creating a date column that
matches correctly with this vector:

> height <- unlist(dat[, 2:4])

> height

Jan011 Jan012 Jan013 Jan014 Jan015 Feb011 Feb012 Feb013
9.190147 10.360700 9.697200 10.960069 10.558849 22.503036 21.924448 20.907641
Feb014 Feb015 Mar011 Mar012 Mar013 Mar014 Mar015

23.063358 17.510099 25.558973 29.159722 33.646649 33.627426 22.732877

Since height iterates first across rows and second across columns, our date vector will need to
repeat the date of the first column for each row in the original data frame. Next, the date vector
will need to repeat the date of the second column for each row, and so on. To do this we use the
rep() command. We can use the rep function to generate a vector in which each date is repeated
5 times:

> date.vec <- factor(names(dat)[2:4], ordered = T)

> date.vec

[1] Jan01 Feb01 Mar01
Levels: Feb01 < Jan01 < Mar01

> date <- rep(date.vec, each = nrow(dat))

> date

[1] Jan01 Jan01 Jan01 Jan01 Jan01 Feb01 Feb01 Feb01 Feb01 Feb01 Mar01 Mar01
[13] Mar01 Mar01 Mar01
Levels: Feb01 < Jan01 < Mar01

We now have vectors height and date which are of equal length and we could cbind them
together to make a new data frame, but we are still missing something—the plant id. Unlike date,
plantId iterates across the rows rather than across the columns of the original data. So, we can
create a vector of plant ids using the same technique we used to create the date vectors but using
the times argument instead of the each argument.
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> plantId <- rep(dat$plantId, times = 3)

> plantId

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

We are now ready to create our new data frame that is well-formed:

> dat.good <- cbind.data.frame(plantId, date, height)

> dat.good

plantId date height
Jan011 1 Jan01 9.190147
Jan012 2 Jan01 10.360700
Jan013 3 Jan01 9.697200
Jan014 4 Jan01 10.960069
Jan015 5 Jan01 10.558849
Feb011 1 Feb01 22.503036
Feb012 2 Feb01 21.924448
Feb013 3 Feb01 20.907641
Feb014 4 Feb01 23.063358
Feb015 5 Feb01 17.510099
Mar011 1 Mar01 25.558973
Mar012 2 Mar01 29.159722
Mar013 3 Mar01 33.646649
Mar014 4 Mar01 33.627426
Mar015 5 Mar01 22.732877

You will notice that the row.names attribute is defined based on the heights vector. This is
sort of annoying, but we can fix it easily enough.

> dat.good <- data.frame(dat.good, row.names = NULL)

> dat.good

plantId date height
Jan011 1 Jan01 9.190147
Jan012 2 Jan01 10.360700
Jan013 3 Jan01 9.697200
Jan014 4 Jan01 10.960069
Jan015 5 Jan01 10.558849
Feb011 1 Feb01 22.503036
Feb012 2 Feb01 21.924448
Feb013 3 Feb01 20.907641
Feb014 4 Feb01 23.063358
Feb015 5 Feb01 17.510099
Mar011 1 Mar01 25.558973
Mar012 2 Mar01 29.159722
Mar013 3 Mar01 33.646649
Mar014 4 Mar01 33.627426
Mar015 5 Mar01 22.732877
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It is a pretty long process to create a well-formed data frame, but the effort up front is worth
it. The final step is to automate what we’ve just done by putting everything into a function.

> convertDat <- function(d = dat) {

+ height <- unlist(d[, 2:4])

+ date.vec <- factor(c("Jan01", "Feb01", "Mar01"), ordered = T)

+ date <- rep(date.vec, each = nrow(d))

+ plantId <- rep(d$plantId, times = 3)

+ out <- data.frame(plantId, date, height)

+ row.names(out) <- NULL

+ return(out)

+ }

In summary, to create a well-formed data frame any columns that form meaningful sequences
should be split into a response column and an iterating explanatory column. To build new variables
that iterated across rows in the original dataset, use the times argument, for variables that repeated
across columns, use the each argument. Put all the commands into one function. Then, when your
data changes or you get a new dataset, you can simply execute the function.

4.1.2 The Elegant Method

We wish to “unwind” the height columns, to generate a single column that is height and a single
column that is the date of the measurement. This is easily accomplished using the command stack.
stack concatenates multiple vectors into a single vector and a factor which is the column name
where each element of the vector originated. In the example above we want to stack the columns
of heights across dates

> hgt <- stack(dat, select = -plantId)

> hgt

values ind
1 9.190147 Jan01
2 10.360700 Jan01
3 9.697200 Jan01
4 10.960069 Jan01
5 10.558849 Jan01
6 22.503036 Feb01
7 21.924448 Feb01
8 20.907641 Feb01
9 23.063358 Feb01
10 17.510099 Feb01
11 25.558973 Mar01
12 29.159722 Mar01
13 33.646649 Mar01
14 33.627426 Mar01
15 22.732877 Mar01
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We now have two vectors that are the correct length for the final dataframe, but we need to
duplicate the values in plantId. We do this by replicating the indices of the rows for the dataframe.
This can be done as in the 4.1.1 via rep.

> id <- rep(1:nrow(dat), length = nrow(hgt))

Finally, we put it all together to create a new dataframe.

> dat2 <- cbind.data.frame(dat[id, 1], hgt)

As stated earlier, most data that you will work with can be manipulated using this method.
There will be occasions, however, that you will have to use the brute force method.

4.2 Data output in Tables and Figures

Outputting data from R is much easier than getting data into R. That said, because R was developed
for Unix systems, getting figures and tables that are manuscript-ready out of R can take some doing
for Windows users or for journals that do not accept Postscript figures.

4.2.1 Tabular output

There are analogous write. functions for the read.table function at its derivatives (e.g. write.csv).
The output produced by these functions looks just like the data that is read into R with the ex-
ception that row names are exported by default for all dataframes.

> df <- data.frame(resp = rnorm(10), trt = sample(c("trt1", "trt2",

+ "trt3"), 10, replace = T))

> write.csv(df, "df.csv")

“df.csv” looks like this:

"","resp","trt"
"1",0.0487173946817355,"trt1"
"2",-1.09039323012717,"trt1"
"3",1.15214344621636,"trt2"
"4",-0.0237947788086044,"trt1"
"5",-1.11909058034539,"trt3"
"6",1.02685427714149,"trt3"
"7",0.0226001537783687,"trt1"
"8",2.12493601241390,"trt1"
"9",1.73754976261647,"trt2"
"10",-2.18835432067972,"trt3"

We have already discussed how to generate well-formed dataframes for R. Dataframes, however,
are not very compact data storage. They maximize the number of rows, minimize the number of
columns, and often have lots of repeated data values. We can convert this long data format into
a compact data format using the unstack command in a similar way to which we used the stack
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command. unstack takes a formula as an argument. We have not discussed formulas yet, but in
a nutshell they are specified as response~predictor1 + predictor2 + predictor3.... In the
case of unstack the response variable is the column which should be compacted and the predictors
are variables whose levels should be turned into column headings.

The statements below compact the dat.good dataframe that was created earlier using the
elegant method:

> us <- unstack(dat.good, height ~ date)

> cbind.data.frame(plantId = dat.good$plantId[1:nrow(us)], us)

plantId Feb01 Jan01 Mar01
1 1 22.50304 9.190147 25.55897
2 2 21.92445 10.360700 29.15972
3 3 20.90764 9.697200 33.64665
4 4 23.06336 10.960069 33.62743
5 5 17.51010 10.558849 22.73288

4.3 Xtables

Content missing...will be repaired by 20080418.

> library(xtable)

> data(tli)

> fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg, data = tli)

> fm1.table <- xtable(fm1)

> print(fm1.table)

% latex table generated in R 2.7.1 by xtable 1.5-2 package
% Thu Jul 24 19:04:02 2008
\begin{table}[ht]
\begin{center}
\begin{tabular}{lrrrrr}
\hline
& Df & Sum Sq & Mean Sq & F value & Pr($>$F) \\
\hline

sex & 1 & 75.37 & 75.37 & 0.38 & 0.5417 \\
ethnicty & 3 & 2572.15 & 857.38 & 4.27 & 0.0072 \\
grade & 1 & 36.31 & 36.31 & 0.18 & 0.6717 \\
disadvg & 1 & 59.30 & 59.30 & 0.30 & 0.5882 \\
Residuals & 93 & 18682.87 & 200.89 & & \\
\hline

\end{tabular}
\end{center}
\end{table}

The output from print(tli.table) is written in LATEXmarkup language and can be pasted directly
into a LATEXdocument as I have done below.

xtables can also make pretty tables for web pages
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> print(fm1.table, type = "html")

<!-- html table generated in R 2.7.1 by xtable 1.5-2 package -->
<!-- Thu Jul 24 19:04:02 2008 -->
<TABLE border=1>
<TR> <TH> </TH> <TH> Df </TH> <TH> Sum Sq </TH> <TH> Mean Sq </TH> <TH> F value </TH> <TH> Pr(&gt F) </TH> </TR>
<TR> <TD> sex </TD> <TD align="right"> 1 </TD> <TD align="right"> 75.37 </TD> <TD align="right"> 75.37 </TD> <TD align="right"> 0.38 </TD> <TD align="right"> 0.5417 </TD> </TR>
<TR> <TD> ethnicty </TD> <TD align="right"> 3 </TD> <TD align="right"> 2572.15 </TD> <TD align="right"> 857.38 </TD> <TD align="right"> 4.27 </TD> <TD align="right"> 0.0072 </TD> </TR>
<TR> <TD> grade </TD> <TD align="right"> 1 </TD> <TD align="right"> 36.31 </TD> <TD align="right"> 36.31 </TD> <TD align="right"> 0.18 </TD> <TD align="right"> 0.6717 </TD> </TR>
<TR> <TD> disadvg </TD> <TD align="right"> 1 </TD> <TD align="right"> 59.30 </TD> <TD align="right"> 59.30 </TD> <TD align="right"> 0.30 </TD> <TD align="right"> 0.5882 </TD> </TR>
<TR> <TD> Residuals </TD> <TD align="right"> 93 </TD> <TD align="right"> 18682.87 </TD> <TD align="right"> 200.89 </TD> <TD align="right"> </TD> <TD align="right"> </TD> </TR>
</TABLE>

4.3.1 Figure Output

Figures can be saved in multiple formats directly from the GUI graphic window. It is also common
to create a figure output directly to a file from the command line. You can do this by calling a new
device of the figure format that you want. All figure output formats are available in the grDevices
library. These include: pdf,postscript,bmp,jpeg, and png. Once these devices are started, you
can call plotting functions as normal. Instead of being output to the screen, however, the plots
are created in a file of the chosen format. To complete the plot, and close the file use, turn off the
device using the command dev.off.

> library(grDevices)

> x <- seq(1, 20, length = 50)

> err <- rnorm(50)

> y <- 2 * x + 3 + err

> pdf("fig1.pdf", width = 7.5, height = 7.5, paper = "letter")

> plot(x, y)

> abline(3, 2, col = "red")

> dev.off()

X11
2

4.4 Encapsulating Input and Output

Importing and Exporting data from R typically takes many lines of code. It is best to encapsulate
data input and output into their own functions as part of a *.r script. Within the input function
ODBC channels are opened, data are imported, and then reshaped into forms appropriate for
analysis. Newly created data can be assigned to the global environment using the assign command
with the argument envir=.GlobalEnv. The output function calls all the plotting and a table
generating commands needed to export the figures and tables in formats fit for publication. This
keeps final data output separate from generic plotting or printing to the screen. So, you can work
on your output within the R native interfaces, but then easily export the results into manuscript
formats. Here I provide a small example using some of the datasets we created above.
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io.r

### Includes
library(RODBC)
library(grDevices)

### My importing function
import<-function(){

## import example.xlsx
ch1<-odbcConnectExcel("example.xlsx")
ex<-sqlFetch(ch1,"Sheet1")
assign(ex,"ex",envir=.GlobalEnv)
odbcCloseAll()

## import dat.csv
dat<-read.csv("dat.csv")
hgt<-stack(dat,select = -plantId)
id<-rep(1:nrow(dat),length=nrow(hgt))
dat<-cbind.data.frame(dat[id,1],hgt)
assign(dat,"dat",envir=.GlobalEnv)

return(invisible())
}

analyze.example<-function(x=example){aov(resp~trt,data=x)}

plot.dat<-function(x=dat){boxplot(hgt~date,data=x)}

output<-function(){
## output example
mod<-analyze.example()
mod.table<-xtable(mod)
writeLines(print(mod.table))

## output dat
pdf("fig1",width=7.5,height=7.5,paper="letter")
plot.dat()
dev.off()

}
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4.5 Exercises

The following is a time series of weights for 3 indiviudals chosen from 2 populations.

Individual Pop1Time1 Pop1Time2 Pop1Time3 Pop2Time1 Pop2Time2 Pop2Time3
A 25 34 22 11 54 19
B 33 12 12 14 28 43
C 16 17 20 19 6 3

1. Write this table as a .csv

2. Read the *.csv into R

3. Turn the data into a well-formed dataframe.

4. Calculate population means and variance by population and time

5. Output you results to a file

6. Extra Credit: Enclose all the input and output into two function
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Session 5

Scripting and Functions

R scripts are simply text files that contain R commands. There are many different ways to build
scripts in R and there are many different ways to interact with scripts in R. The best advice is to
try as many different ways as you can and select find one that fits for you.

5.1 Text Editors

5.1.1 MS Word

Any text editor can create R script files. Many R users simply use Notepad. WYSIWYG text
editors like Microsoft Word can also be use to store R commands. These documents allow for
extensive documentation of the code, or for embedding figures by copying and pasting from an R
graphics device. Since these files are not true text files, though, commands stored in MS Word
format cannot use the source command to read an entire file. Instead, commands must always be
copied and pasted into the R command line.

5.1.2 The R GUI

The R GUI also provides a limited text editor for creating script files. The Mac version of this
text editor is far superior to the Windows version, and notably includes syntax highlighting and
automatic indentation. Syntax highlighting means that R commands, comments, and strings,
are colored differently than other text. Most programmer use text editors which have syntax
highlighting because it makes the code much easier to read.

Automatic indentation is useful when writing functions. Code is more readable when nested
blocks are indented. For example:

> tmp <- function() {

+ print(1:10)

+ x <- NULL

+ y <- NULL

+ for (i in 1:10) {

+ x <- i + 1

+ for (j in 1:20) {

+ y <- x + j
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+ }

+ }

+ }

is less readable than

> tmp <- function() {

+ print(1:10)

+ x <- NULL

+ y <- NULL

+ for (i in 1:10) {

+ x <- i + 1

+ for (j in 1:20) {

+ y <- x + j

+ }

+ }

+ }

Editors in both operating systems allow users to execute code for a particular selection or
source the entire document directly into the R command line. It is important to remember that
code sourced in this way is seen on the R standard out screen, but is not report in the .RHistory
file 5.2. This contrasts with code which is copied and pasted onto the command line, which does
become part of the .RHistory. While writing the .RHistory file may be seen as an advantage,
it isn’t really because your .RHistory history can become clogged with incorrect code while you
debug a script.

Neither editor allows anything but raw text in the file. So, plots and tables cannot be embedded.

5.1.3 TextPad

Since the editor provided by R is lacking syntax highlighting, the shareware TextPad (http://
www.textpad.com) is a good alternative for Windows users. It provides both syntax highlighting
and automatic indentation at the expense of only being able to source the file using the source
command or copying and pasting commands. TextPad is very good text editor for programming
in general, and provides styles for virtually any programming language.

To set up TextPad to work with R:

1. Install TextPad

2. Download the R syntax definition (http://www.textpad.com/add-ons/files/syntax/r.
zip)

3. Unzip r.zip into the Samples the TextPad installation folder, typically, C:\Program Files\Text Pad 5\Samples\

4. Start TextPad

5. From the menu: Configure > New Document Class...

6. Document Class Name: R
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7. Class Members: *.rhistory, *.r

8. Check Enable Syntax Highlighting

9. Syntax definition file: r.syn

10. Finish

11. From the menu: Configure > Preferences > Document Classes > R > Tabulation

12. Default Spacing: 2 or 4

13. Indent Size: 2 or 4

14. Check Convert new tabs to spaces

15. Check Convert existing tabs to spaces when saving files

Once you’ve finished creating the new document class. Files with the extension *.r or *.RHistory
will automatically be associated with the R class, and the proper highlighting and tabulation will
be invoked. If you save your files with a different extension (e.g. .txt) then you will have to set
the properties by hand from View > Document Properties in a similar manner to the sequence
for creating the document class.

5.1.4 Emacs and ESS

Emacs is a venerable text editor developed for Unix environments. It has so many features, some
have dubbed it a full fledged operating system. It is the de facto editor of R power users for
generating scripts and packages, and for even running R. There are ports of emacs for Windows
(http://www.gnu.org/software/emacs/windows/) and Mac (http://aquamacs.org/, though it
is definitely more difficult to get the advanced features of emacs (like compiling R packages) working
in the Windows port.

The learning curve for Emacs is steep, and we’ll not take time here to go into how to use Emacs
with its R interface package, Emacs Speaks Statistics (ESS). I will provide an overview, however,
of all the things that Emacs can do with R:

� All of the standard features of a good text editor including syntax highlighting and auto-
indentation

� Sourcing of individual lines, functions, code blocks, or files

� Running R directly within the editor so that the output of R can be edited directly.

� Extensively documented code using the Rweave commands and LATEX. This allows users to
generate a fully formatted document (even a scholarly article) with R code embedded in the
text. R code is run within the text and the output (even figures and tables) are created
directly in the document.

� Generate R packages which easily incorporate C or Fortran Code.

� Generate R documentation files.

If you plan on using R for all your future data analysis, learning Emacs is well worth the effort.
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5.2 Executing Scripts in R

Given that your chosen text editor will allow it there are 5 ways to execute code stored in a file on
the R command line:

1. by line

2. by function

3. by selection

4. by file and

5. copy and paste

. Execution by line will send the line on which your cursor currently resides to R and move the cursor
to the next line. By function will source the entire function surrounding the cursor. By selection
will send a highlighted region to R. Finally sourcing the entire file (either through a shortcut-key, a
pressed button, or via the source command) reads every line into R just as though you had typed
it directly. Finally, you can copy an paste sections of code directly onto the command line.

When code is sourced by copy and paste, the pasted code will appear in the .RHistory. Code
sourced by any other method will not appear in the .RHistory file. While writing to the .RHistory
file may be seen as an advantage, it typically is not because the .RHistory history can become
clogged with incorrect code while you debug a script. For all methods except for source command
the sourced code will appear in the R standard output.

Sourcing files directly by using the source command is typically the fastest way to debug
scripts. Doing so allows you to re-run scripts with a minimum of keystrokes. To make sourcing the
file efficient using the source command, however, most of the code in the script should be stored
as functions. An example script might be:

### myfile.r
### Created: 2008.06.05

### Import my data
import<-function(){
## import code goes here....

}

analyze<-function(){
## analysis code goes here...

}

### This is the function to debug
makeNewData<-function(){
## do some stuff

}

To debug the function makeNewData. I would type the following on the R command line:
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> source("myfile.r")

> tmp <- makeNewData

If an error results from the execution of this line of code, switch to the text editor (Alt-Tab).
The offending statements in the text file would be corrected and saved (Ctrl-s). Switch back to
R (Alt-Tab) and the exact procedure can be re-run on the R command line via up-arrow, Enter.
This keystroke sequence becomes second nature once a few files are written and debugged.

5.3 Writing functions in R

Writing function is the most daunting task that new R users face. Many R users never climb this
mountain and their scripts are merely a hodge-podge of commands. They must remember how to
execute those commands in the correct order so the output is predictable and repeatable. They can
not apply the code they’ve written do other projects without copying and pasting their code over
and over. Finally, they end up with thousands of lines of code, where there may have only been a
dozen if they had written a function and executed that function repeatedly.

Writing functions alleviates all of these problems, but many R users do not know where to
begin. They can see how individual commands work together, but encapsulating their behavior
into a more general function is difficult. Below I outline a method that I have found particularly
useful in going from commands typed on the screen to scripts with functions. To illustrate the
process, we’ll use an example problem of doing a permutation test on a series of weights from 2
populations. We want to test whether populations differ significantly in weight. Let’s assume that
when fieldwork was started animals were sorted into pairs and the data look like this (as a .csv):

pop1, pop2
23,45
24,41
...

There are few things that we need to do with this data. First, it is not a well-formed dataframe.
Species is an attribute and it would be better if species were a column and weight was a column.
Second, we need to take the mean weight of each species. Third, we must randomly assign species
to weights many times and calculate the mean. Finally, we need to compare the difference in means
of the populations against the difference in means for the permuted samples. In the absence of real
data we can simulate the dataset above (See 6.2.1). Let’s assume that species weights are normally
distributed with different means and standard deviations.

> popWeights <- data.frame(pop1 = rnorm(10000, 500, 20), pop2 = rnorm(10000,

+ 400, 10))

> str(popWeights)

'data.frame': 10000 obs. of 2 variables:
$ pop1: num 514 522 514 485 451 ...
$ pop2: num 404 397 398 399 389 ...

This dataset consists of 10,000 observations. for each population.
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5.3.1 Building scripts from history files

The early stages of any analysis in R are filled with merely trying to get statements to execute on
the command line and making sure that the output is correct. If you have a large dataset it can
be useful to do these preliminary steps on a subset of the data. An easy way to do this is to write
a function that randomly samples rows from a data frame such as this:

> sampleDf <- function(df, ...) {

+ rw <- sample(1:nrow(df), ...)

+ return(df[rw, ])

+ }

Let’s assume that my initial analysis steps on the command line look something like this:

> sampleDf(popWeights, 5)

pop1 pop2
6236 471.1347 401.0590
9248 540.3618 402.4048
9790 493.9149 398.2597
6819 522.7567 400.7953
857 532.1074 402.8629

> sampleDf(popWeights, 5)

pop1 pop2
3789 479.1615 389.6545
7770 527.7397 401.4634
5124 500.5769 390.5791
2154 520.6714 405.0478
7772 504.1651 389.8230

> smpWeights <- sampleDf(popWeights, 5)

> names(smpWeights)

[1] "pop1" "pop2"

> unlist(smpWeights)

pop11 pop12 pop13 pop14 pop15 pop21 pop22 pop23
509.4116 526.1957 504.3259 499.7033 487.7454 401.2340 411.0782 398.6482

pop24 pop25
410.1229 406.4585

> tmpWeights <- unlist(tmpWeights)

> tmpWeights <- unlist(smpWeights)

> rep(names(smpWeights), length = length(tmpWeights))
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[1] "pop1" "pop2" "pop1" "pop2" "pop1" "pop2" "pop1" "pop2" "pop1" "pop2"

> tmpNames <- rep(names(smpWeights), length = length(tmpWeights))

> smpWeightsDf <- cbind(pop = tmpNames, weight = tmpWeights)

> smpWeightsDf

pop weight
pop11 "pop1" "509.411617887864"
pop12 "pop2" "526.195683458395"
pop13 "pop1" "504.325936102086"
pop14 "pop2" "499.703315896955"
pop15 "pop1" "487.745439763608"
pop21 "pop2" "401.23398264769"
pop22 "pop1" "411.078170446368"
pop23 "pop2" "398.648161644099"
pop24 "pop1" "410.122880759933"
pop25 "pop2" "406.458525575216"

This series of commands simply goes through the process of creating a well-formed sample
dataframe with 5 observations for each population.

Once you have the preliminary analysis steps executing correctly, you can begin to join your
statements together using the history file. You can save a history file on the fly using savehistory.
Save the history of the R session as a new file, and open this file in a text editor.

> savehistory("FormDataFrame.r")

The history file looks like this:

sampleDf(popWeights,5)
sampleDf(popWeights,5)
smpWeights<-sampleDf(popWeights,5)
names(smpWeights)
unlist(smpWeights)
tmpWeights<-unlist(tmpWeights)
tmpWeights<-unlist(smpWeights)
rep(names(smpWeights),length=length(tmpWeights))
tmpNames<-rep(names(smpWeights),length=length(tmpWeights))
smpWeightsDf<-cbind(pop=tmpNames,weight=tmpWeights)
smpWeightsDf

Next, go through each statement in the history file and delete statements that returned an error
when you execute them or are superfluous in some way. Once you have completed this process, you
can test your remaining code by opening a new R session with an empty workspace (or a workspace
that only contains your data subset) and sourcing this code. If your output is the same as what
you created on the command line, then you can have reasonable confidence that your new script is
working correctly. For the example, the pruned history file looks like this:
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smpWeights<-sampleDf(popWeights,5)
tmpWeights<-unlist(smpWeights)
tmpNames<-rep(names(smpWeights),length=length(tmpWeights))
smpWeightsDf<-cbind(pop=tmpNames,weight=tmpWeights)

The next step, if you had been working on a data subset is to do a search and replace on the
script in the text editor replacing the symbol of the data subset with the symbol of the full dataset.
For the example the new file would look like:

tmpWeights<-unlist(popWeights)
tmpNames<-rep(names(popWeights),length=length(tmpWeights))
weightsDf<-cbind(pop=tmpNames,weight=tmpWeights)

There is an easier way to do than simply searching and replacing, however, by encapsulating
the entire script into a function.

5.3.2 Building functions from scripts

Building functions from scripts is as simple as placing brackets around the entire script and assigning
it to a symbol. So, for instance

cleanData<-function(){
tmpWeights<-unlist(popWeights)
tmpNames<-rep(names(popWeights),length=length(tmpWeights))
weightsDf<-cbind(pop=tmpNames,weight=tmpWeights)

}

Since weightsDf is assigned in the last line of the function, this function will return the value of
weightsDf. We could make this more explicit by adding the statement: return(weightsDf). Re-
membering the discussion on Scope (See ??), we realize that tmpWeights, tmpNames and weightsDf
are all scoped inside the function and will not be assigned permanently to the workspace. So, we
would have to execute the following statements on the command line to assign weightsDf to the
global workspace.

> source("FormDataFrame.r")

> weightsDf <- cleanData()

Right now, cleanData does not accept any arguments. It might be useful, however, to pass the
original data popWeights as an argument to the function. Say, for instance, that a second dataset
similar to popWeights is collected. If the function accepts an argument that has the same form
as popWeights, we can clean the second dataset immediately. To minimize confusion I’ll replace
popWeights with df in the function. Adding a parameter is a simple matter of placing the symbol
in the function definition. We can even assign a default value to the parameter so that it cleans
popWeights when no arguments are passed.

cleanData<-function(df=popWeights){
tmpWeights<-unlist(df)
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tmpNames<-rep(names(df,length=length(tmpWeights)))
weightsDf<-cbind(pop=tmpNames,weight=tmpWeights)
return(weightsDf)

}

The steps for taking a workspace session from the command line to well formed scripts and
functions can be summarized as follows:

1. Save history as script file

2. Clean history of errors and unnecessary statements

3. Text Script

4. Enclose script with functions

5. Give the function a return value

6. Convert input data to parameters

While encapsulating cleaned history file in function may seem tedious and a bit unnecessary, as
you analyses become more complex this procedure is very helpful. Section gives some additional
reasons why writing in function is a good thing, in general.
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Session 6

Loops and Scripting Best Practices

6.1 Looping through code

Often, there is reason to do calculations more than once. Perhaps you have multiple datasets of
similar form that you must calculate statistics for, or you have to repeatedly sample from distribu-
tions. R has multiple built-in methods for calling functions multiple times. These methods vary in
the speed. The slowest method, for loops, is quite transparent and the logic of loops is easy to
follow. Faster methods such as apply functions are not as easy to read, but make your often make
your code more succinct.

6.1.1 vectorization

All fundamental types in R are built upon the basic list and vector classes. It is relatively easy to
perform simple mathematical and statistical operations for each value in an entire list or vector.
We have already discussed this in 1.2.1. All elementary mathematical operations can be performed
on vectors simply by treating the vector as an individual unit:

> h <- 1:5

> h + 2

[1] 3 4 5 6 7

> 2^h

[1] 2 4 8 16 32

Because they are built upon vector and list classes, matrices, arrays and dataframes can accept
similar operators.

> k <- data.frame(1:5, rnorm(5))

> k * 2

X1.5 rnorm.5.
1 2 -0.7847659
2 4 -0.5127008
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3 6 0.5104317
4 8 -3.8656292
5 10 0.8054540

In addition to elementary operators, many other functions in R accept vectors as arguments.
When sampling from a distribution, for example, you can pass a vector of means, and the function
will sample successively from each mean, up to the defined sampled size.

> rnorm(50, mean = c(-100, 100))

[1] -100.34072 99.17127 -100.08154 100.20972 -99.53559 98.81432
[7] -100.20773 100.95001 -99.50621 100.42025 -100.99467 100.03054
[13] -100.61734 99.77686 -99.64446 99.24278 -99.67107 100.34850
[19] -99.94083 100.37482 -98.68266 100.81757 -99.61577 99.46580
[25] -100.60288 100.98679 -100.25290 100.63571 -100.59128 101.09107
[31] -98.53812 100.85844 -99.10016 99.40329 -101.02080 100.81769
[37] -98.96822 101.87037 -100.74265 99.18763 -101.21869 99.40196
[43] -100.80644 99.47621 -99.68403 99.17581 -99.75691 100.59428
[49] -101.68857 100.66914

Performing operations on entire vectors, or their derived classes is the fastest method for per-
forming multiple operations at once. The vector and matrix structure, in fact, one of the great
benefits of R as a programming language for mathematics. However, the functions that support
vector operations and those which do not are haphazard. So, for instance you can pass a vector
of means to the rnorm function and the sample will be generated from all the means. But, if you
pass a vector of sample sizes, the first argument, rnorm generates a sample of the same length as
the vector of sample sizes, not multiple samples of the sizes assigned in the vector

> rnorm(c(5, 10, 20))

[1] -0.06516272 -0.23402256 1.35652543

Functions supporting vectorization are not well documented. You can look in the help and
sometimes the particular parameter you can to vectorize will be defined specifically for vector, but
often the people who developed the package just forgot to document this support. So, the best
practice is to experiment with vectorization of operations before moving onto other methods such
as for loops or apply functions. Just try it out on a subset of the data, and if it works, then great.
If not, then you must move on to more pragmatically iintensive operations.

6.1.2 for loops

The for loop is the easiest method to understand, conceptually. Any calculations that you want
to perform multiple times simply go between braces {} as part of a for command. The number of
times the calculation is performed is set by an index vector which is passed to the for loop as an
argument, and whose value at each iteration is passed to the loop. It is easiest to see by example.
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> out <- vector(length = 10)

> for (i in 1:10) {

+ out[i] <- 2 * i

+ }

> out

[1] 2 4 6 8 10 12 14 16 18 20

There are three major parts to a for loop: initialization, the call, and the procedure. Since the
output is to be built sequentially, you must create an empty container that can hold each output in
the for loop. In the example above, the initialization portion of the loop creates an empty vector
named out whose length is 10. At that point, every value in out is set to NA.

The second part of the for loop is the call. This is the actual statement of the for command.
There are 2 arguments to the for function. The second argument is a vector of indices that will
be assigned to the symbol of the first argument for each execution of the loop. So, in the example
above, each element of the vector 1:10 is assigned to the symbol i. The first time through the
loop, i is equal to 1. The second time through the loop i is equal to 2, and so on.

The third part of a for loop is the procedure. These are the statements inside the brackets
that will be executed multiple times. Unlike other functions, for does not have a return value. So,
the last statement before the } is treated simply as another statement, not a return value. That is
why the output vector, if one exists, must be initialized beforehand and then assigned sequentially
in the procedure.

Most often, the index vector will simply be a vector from 1 to the number of times you wish to
execute the loop. In order to build the output sequentially, you simply assign the index position on
the output. It is important to note, however, that the index vectors, can be a vector of any type.
So, the following is a perfectly valid, and useful, for loop:

> filesToImport <- c("data1", "data2", "data3")

> for (f in filesToImport) {

+ tbl <- read.csv(f)

+ assign(f, tbl, env = .GlobalEnv)

+ }

The above code, initializes a vector of files to import. Then, it imports each file in a for loop
and assigns them to the global workspace. Another instance where for loops are very useful is in
creating multiple plots (See ???REF).

for loops are the slowest way to build up calculations in R. While, they are relatively straight-
forward to code, they do have some other weaknesses. First and foremost, is that using for loops
keeps developers from thinking about objects in R as whole entities. Instead, for loop are designed
to treat each individual value in an object as distinct. This prevents users and developers from
thinking correctly about how to treat objects. Second, for loops often add unnecessary length to
codes and are, in general, more error prone. Finally, for loops are in nearly every situation easily
circumvented using apply function which are discussed below (6.1.3). A general rule might be to
avoid for loops where possible. If using for loops helps you think about a problem better, then
go ahead and build the for loop. After getting the loop to run it is typically very easy to translate
the completed loop into an apply function.
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6.1.3 apply functions

Writing R scripts using for loops is very slow because R is an interpreted rather than a compiled
language. Most of the functions that cause R to run fast have a C backend. We can take advantage
of this speed by replacing for loops with *apply functions.

There are 5 different types of apply functions: sapply,lapply,apply, tapply, and by. Each
apply function works with a different class of data, but their general application is the same. That
is, apply functions call a user-defined functions for each element in a sequence of elements. These
elements may be single numbers, vectors, lists, or rows or columns of a data frame or matrix.
Whatever the elements, apply functions perform the exact same procedure on every element of the
function. The easiest to begin with is sapply. sapply is used to execute a particular function in
each element of a vector.

> v <- 1:10

> sapply(v, function(x) {

+ x * 2

+ })

[1] 2 4 6 8 10 12 14 16 18 20

In the above example, we fed sapply two arguments. The first was a vector. This is the object
that for which we want a calculation done on each element. The second argument is a function.
You’ll notice that unlike functions we’ve written previously, the function definition is not assigned
to a symbol. That is standard practice for apply functions, though you could easily have written
it in this way:

> f <- function(x) {

+ x * 2

+ }

> sapply(v, f)

[1] 2 4 6 8 10 12 14 16 18 20

You’ll notice that the function takes one argument x. This argument (which should always be
the first argument in your function), is where each element of the vector is passed to. So, in this
case, sapply sends each element of v (e.g. 1,2,3,4...) successively to the function as x. You can
specify additional arguments to the function as well. These additional arguments come after the
function definition in the sapply call.

> sapply(v, function(x, y) {

+ x * y

+ }, 2)

[1] 2 4 6 8 10 12 14 16 18 20

You can also use built-in R functions as the functions to apply to dataset.

> sapply(v, print)
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[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 1 2 3 4 5 6 7 8 9 10

All further apply functions operate similarly to sapply. They only differ in the type of data
they accept as input and pass to the function. I go through them in order.

Function Input Pass
lapply list list component
sapply vector single element
apply matrix,dataframe,or an array single rows or columns
tapply vector vector
by dataframe rows

6.2 4 R’s for R Programming

There are few things more frustrating than spending huge amounts of time figuring out what a piece
of code is supposed to do. As researchers, we want to spend our time searching for patterns in data,
ogling pretty graphs, and writing about our findings. In order to get to those fun parts, however,
we have to analyze or data, generate those pretty graphs, and understand how we got there. Today,
this process inevitably requires writing code for a statistical package. Unfortunately, it is at this
stage that many of us get bogged down. Since most scientists are not computer programmers by
training, we end up spending 80% of our time trying to get our code to work right, and 10% of
our time interpreting the results. This paper is designed to help you reduce that 80% to 20%,
by introducing you to some of the elements of good program design that might be taught to a
undergraduate computer science major. None of the suggestions I propose here require advanced
programming knowledge. Rather they require self-discipline and self-imposed structure in writing
code. 5 minutes spent preparing good code will prevent days of work at a later stage in your
research. The code you write needs to be right, repeatable, robust, and readable.

6.2.1 Right

Your code must run without errors and give you the correct answer. The first does not imply
the second. For every output you must ask yourself, âĂIJDo I believe this?âĂİ The best way to
guarantee correctness is to generate a simulated dataset with a known pattern similar in structure
to your observed dataset, and see if your code can extract the pattern. For instance, if you want
to do a linear regression you might generate the following dataset:

> lm.dataset <- function(slope = 2, intercept = 5, std.dev = 2,

+ sample.size = 1000, x.range = c(0, 10)) {
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+ error <- rnorm(sample.size, 0, std.dev)

+ x <- seq(x.range[1], x.range[2], length.out = sample.size)

+ y <- (slope * x + intercept) + error

+ out <- cbind.data.frame(x, y)

+ return(out)

+ }

You could then use this dataset to assess whether your analysis (in this case itâĂŹs simply the
command lm) extracts the correct slope and intercept.

> ds <- lm.dataset()

> ds[1:10, ]

x y
1 0.00000000 3.951035
2 0.01001001 5.655147
3 0.02002002 7.033094
4 0.03003003 6.029300
5 0.04004004 3.355816
6 0.05005005 4.936983
7 0.06006006 7.935332
8 0.07007007 7.995864
9 0.08008008 3.585052
10 0.09009009 6.374611

> lm(y ~ x, data = ds)

Call:
lm(formula = y ~ x, data = ds)

Coefficients:
(Intercept) x

4.854 2.021

6.2.2 Repeatable

You will have to do your analysis more than once. Most often you will spend some time at the
beginning of your research project creating the code that extracts patterns from your data. Then,
you will go away from it for a while, do some reading or write sections of the paper. After that,
you will return to your analysis and try to generate the figures and tables for the paper. You might
have collected more data by this time, or forgotten which functions did what in your code. To avoid
problems at this late stage in your research, always build your R code in such a way that you can
repeat your analysis beginning from your raw data and proceeding to the finished figures in just a
few steps. Ideally, this could be one function (e.g. rebuild()) that calls other functions youâĂŹve
written. A structure that I have adopted which works well is to have every project contain the
following functions:
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Function Description
rebuild() Clean out any old datasets, and rebuild the entire project.
import() Import the raw data into R.
analyze() Perform statistical analysis on the data.
output() Generate tables and figures in a format acceptable for print.

6.2.3 Robust

The best programmers are the laziest. They write good code once, and then use it over and over
again. To facilitate this when writing R code, you should always write in functions. Do not write
source files that just execute lines of code. Rather source files should contain functions that can
be called from the command line. Second, writing robust code that can be reused in different
circumstances means learning how to intelligently design functions that use parameters. Take, for
example the simulated dataset function from the Right section above. A poorly written version of
this code with identical output is:

> lm.dataset <- function() {

+ error <- rnorm(1000, 0, 2)

+ x <- seq(0, 10, length.out = 1000)

+ y <- (2 * x + 5) + error

+ out <- cbind.data.frame(x, y)

+ return(out)

+ }

This function is only useful for generating a 1000 data-point sample in the x range (0,10) from
a normal linear process with slope 2 and intercept 5, and a error standard deviation of 2. It would
be difficult to use this code in any other context, but by defining all the âĂIJnumbersâĂİ in the
function as parameters, we could generate any type normal linear process we wanted. Third, lazy
programmers never write code until they determine whether the code they want already exists.
You should frequently reference the list of available R libraries (http://cran.r-project.org/
web/packages/) to see if thereâĂŹs good code already written for your problem. Then, use that
code in a very general way, such that you could perform similar analyses with different data if you
need to.

A second, but more advanced characteristic of robust R code is the use of generalized functions.
Generalized functions are similar to overloaded functions in object-oriented programming, in that
they perform similar tasks but with different classes of data. This helps the code perform as
expected for users who may not familiar with your specific analysis (or for you when youâĂŹve
forgotten what your code is supposed to do). The plot function is an example of a generalized
function. The plot function may be called on a linear model object (the result of the lm command),
a dataframe, or any number of objects. R knows which plot function to call based on the class of
the object and the presence of a function named plot.class where class is the class of the object.
We could write a plot function for the lm.dataset function by the following code:

> lm.dataset <- function(slope = 2, intercept = 5, std.dev = 2,

+ sample.size = 1000, x.range = c(0, 10)) {

+ class(out) <- c("lmsim", class(out))

+ return(out)
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+ }

> plot.lmsim <- function(lmsim) {

+ fit <- lm(y ~ x, lmsim)

+ plot(y ~ x, data = lmsim, main = "Simulated linear process")

+ abline(fit$coef[1], fit$coef[2], col = "red")

+ return(invisible())

+ }

With the generalized function in place datasets of class âĂIJlmsimâĂİ will plot as we expect.

> ds <- lm.sim()

> plot(ds)

The generalized functions you will encounter most frequently are plot and print.

6.2.4 Readable

Just as you will always have to redo your analysis, you will always forget what your code does.
So, you must be diligent to write code that you can pick up years later and jump right into.
Here are a few main characteristics of readable code. First, readable code conforms to the 3 Rs
listed above. Second, readable code has good variable names. Dataset names and column names
should describe what sort of data they contain (tree.dbh). Function names should contain a
verb (e.g. plot.treeDbh()) The length of variable names should match how often it is used in
your code. For instance a main dataset used across many functions should have a long variable
name (smokiesSpOccur) and a dataset used only a few times in a single function should have a
short name (sp). Use single letters for index variables (e.g. for(i in 1:10)). Third, readable
code must be commented. The comment character for R is #. Each comment line must have a
comment character. At a bare minimum you should have a description of each function above the
function definition. Additionally, you might include a table of parameter descriptions, a description
of the output, and the date the function was last updated. Hold to a format similar to that
of the R documentation (see http://cran.r-project.org/doc/manuals/R-exts.html) for the
specification or just look at any function help file). Additionally you should add comments to code
blocks within functions whose purpose may not be obvious at a glance. All that said, you should
prefer well-named variables and concise code over heavily commented functions. Finally, readable
code is short. Each line of a function should be no more than 80 characters long, and the number
of lines in any one function should not exceed 50. If your function is longer than that, consider
splitting it into 2 functions. Finally, an entire R source file should not contain more than 400 lines
of code. If your code is more than 400 lines, consider splitting the major sections of code, like,
plotting and analysis into separate files that are sourced by one main file. So, for instance in a file
âĂIJproject.râĂİ you would have the following lines:

source("plotProject.r")
source("analysisProject.r")

It takes patience, and a little bit of effort up front to force your code to conform to the four
RâĂŹs of R programming. Time on the front end of your research and analysis, however, will save
you time in the long run. Never think to yourself, âĂIJOh, this will just be a short analysis. I
donâĂŹt have to be so disciplined about my code.âĂİ There are no short analyses and you will
always save time by writing well-formed code.
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6.3 Exercises

We are interested in the stage structure of tree species in a forest. We want to be able to describe
the allometric relationships between diameter and height of species, and the relationship between,
age, diameter and a moisture index (categorical with levels “low”“med” and “high”). We haven’t
collected field data, yet, but we expect the relationship between diameter and height to follow a
power law (height = a*exp(b*diameter), the relationship between age, diameter to be linear, and
the relationship between age and diameter and wetness to be linear.

� Write a function which generates a simulated dataset

� Write functions that determine the relationships between the simulated variables. Make sure
that you write them in such a way that when actually get around to collecting the field data,
all you have to do is send your new data as arguments to the analysis functions

� Write a function that outputs the results your analysis to a file
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Session 7

Statistical Models

So far, we have discuss mainly working with R as a programming language, learning how to work
with the built-in objects, and how to maniupulate objects programmatically. In this session, we
delve more deeply into the statistical problems that R was designed to address. You may ask why
so much time was spent in data manipulation and programming topics instead of statistical tests.
The answer is simple. Given a well-formed data frame (??), most statistical tests in R are one
line of code. The bulk of the work of R data analysis is in actually getting your data into a form
expected by the statistical functions.

The focus of this session is the end product of statistical analyses, figures and tables. As you will
learn, most statistical tests take similar and predictable arguments. Plotting functions, likewise,
are take similar arugments to their test counterparts. This unified framework makes analysis a
simple matter of choosing the right test, and the right plot, and feeding the testing and plotting
functions the predictor and response variables from your well-formed dataframe.

This is not meant to be a comprehensive treatment of all the different statistical tests and plots
that standard R packages offer. One book couldn’t hold all that information, and anyway the list
of available tests is constantly growing. Instead it is meant to help you understand the basic rules
that most statistical tests follow in R. Once you know the rules, you can search the R help for that
test.

I do not cover complex statistical models that must be built from the ground up, here. For
instance, the possible configurations of multi-level models are endless, and Bayesian inference on
such models often requires sampling procedures built specifically for the model. Given sufficient
knowledge of probability thoery on the reader’s part, however, it is a relatively simple matter to
build resampling methods for complex models from the basic commands given in chapter 1 (e.g.
sample, rnorm, seq, rep), and the looping constructs outlined in chapter 7.

7.1 Linear Models

This simplest statistical model in R is a general linear model (not to be confused with a generalized
linear model). A general linear model is simple least-squares linear regression. The function for
linear models is lm. The minimal arguments to lm are a data frame containing all the data and a
formula which specifies what are the predictor variables and what is the reseponse variable. The
output from this function is a linear model object. The linear model object is a special type
of list, with named components corresponding to the different attributes of the linear model like

67



coefficients or fitted values. This standard input (data frame and formula) and output (list with
named components) is common to most statistical models in R (e.g generalized linear models,
ANOVA, or Wilcoxan Rank-Sum tests). Below I discuss the inputs to linear models in detail.

7.1.1 Standard Arguments

The usage of lm is a follows:

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

The arguments formula, data, subset, weights, na.action, model and contrasts are common to
many other statistical modelling functions. I have included the help text for each of these arguments
here:

formula an object of class formula (or one that can be coerced to that class): a symbolic descrip-
tion of the model to be fitted...

data an optional data frame, list or environment (or object coercible by as.data.frame to a data
frame) containing the variables in the model. If not found in data, the variables are taken
from environment(formula), typically the environment from which lm is called.

subset an optional vector specifying a subset of observations to be used in the fitting process.

weights an optional vector of weights to be used in the fitting process. Should be NULL or a
numeric vector. If non-NULL, weighted least squares is used with weights...

na.action a function which indicates what should happen when the data contain NAs. The default
is set by the na.action setting of options, and is na.fail if that is unset. The “factory-
fresh” default is na.omit. Another possible value is NULL, no action. Value na.exclude can
be useful.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

The only required arguments for lm are a formula object (discussed below) and a data.frame
object. A simple example might be:

> pred <- sample(1:50, 50, replace = T)

> err <- rnorm(50)

> resp <- 2 + 0.5 * pred + err

> dat <- data.frame(resp, pred)

> mod <- lm(resp ~ pred, data = dat)

> mod

Call:
lm(formula = resp ~ pred, data = dat)

Coefficients:
(Intercept) pred

1.7104 0.5099
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In the snippet above, I have created a simulated dataset where the response variable (resp) is a
linear function of the predictor (pred) plus some additional error (err). I combined the predictor
and response into a single dataframe (dat). The call to lm says to used the data frame dat to find
the columns resp and pred, and that resp is a function of pred.

Technically, the statment lm(resp~pred) would also work. The response and predictor variables
do not have to be given as columns in a dataframe if they are part of the global workspace. But, it
is best practice to store all part of a statistical model as a dataframe, simply because the dataframe
object force the predictor and responses to have the same length.

There are some specific things that should be noticed about the output of the lm function. The
first is that the output is of class lm, but it is really just a glorified list.

> class(mod)

[1] "lm"

> attributes(mod)

$names
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

$class
[1] "lm"

You should also notice when the name mod is typed on the command line, it is not the list which
is printed to the screen. Rather the statement we used to create the model (the call) and the model
coefficients are printed. This occurs because a special print function is written for objects of class
lm. Most outputs from statistical models have special print methods, that print a brief summary
of results, rather than outputting the entire list.

Additionally, most statistical model classes have a special summary function written for them
that behaves differently than the summary function for dataframes or vectors.

> summary(dat)

resp pred
Min. : 1.700 Min. : 1.00
1st Qu.: 8.564 1st Qu.:14.25
Median :16.024 Median :29.00
Mean :14.998 Mean :26.06
3rd Qu.:20.673 3rd Qu.:37.75
Max. :28.603 Max. :50.00

> summary(mod)

Call:
lm(formula = resp ~ pred, data = dat)
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Residuals:
Min 1Q Median 3Q Max

-2.46046 -0.57122 -0.03414 0.64647 1.83264

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.710399 0.280548 6.097 1.78e-07 ***
pred 0.509888 0.009358 54.486 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9806 on 48 degrees of freedom
Multiple R-squared: 0.9841, Adjusted R-squared: 0.9838
F-statistic: 2969 on 1 and 48 DF, p-value: < 2.2e-16

The summary function for the lm class prints to the screen the output we would typically expect
to see in a results section of paper, with a regression table and Perason R2 statistics. You can
expect the summary function for other statistical models to output similary results, namely what
publishers expect to see in a summary table of a regression.

At it’s core, however, objects of class lm are still justs lists, and you can access important
components of the model output just as you would any other list

> mod$coefficients

(Intercept) pred
1.7103986 0.5098878

> mod$residuals[1:10]

1 2 3 4 5 6 7
1.5122023 -0.6982323 -2.4604560 -0.5205254 1.1446545 -0.1276449 1.0018029

8 9 10
0.5407996 0.9353999 1.3251650

Finally, the lm class has a special plotting function written for it. Plotting is discussed in the
final chapter, but I give a brief synopsis of model plots here. A plot of the linear model can be
called simply using the plot function with the model as the only argument.

Figure 7.1.1

> plot(mod)

Just as with the print and summary commands, objects of class lm have a special plotting
function written for them. This special plotting function does not plot what you might expect,
though. A reasonable expectation might be that the plot function would produce a scatter plot
with the model data plotted as points, and the best fit regression line plotted on top of them. This is
not the case, however. Instead, the default plot method for lm objects generates a series of 4 plots
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Figure 7.1: Graphical output of the plot function for lm objects.

meant to help you validate the assumptions of the linear model. For instance, the first plot of the
series plots the residuals of the regression against the fitted values. The residuals should be evenly
distributed as the fitted values increase. If the spread of residuals is greater for high fitted values
than low fitted values, then the data is heteroscedastic and violates one of the most important
assumptions of linear regression. Again, plot functions for otherstatistical models behave the same
way. Their default plotting methods allow you to test assumptions of the model.

The arugments subset is used frequently to remove outliers from a regression. Say for instance,
that the plot of leverage against the standardized residuals reveals that a few datapoints are strongly
influencing the coefficient estimates (the lower left plot in Figure ?). I set up this situation here:

Figure 7.1.1

> outpred <- sample(1:50, 3, replace = T)

> err <- rnorm(3)

> outresp <- 8 + 2 * outpred + err

> outdat <- data.frame(resp = outresp, pred = outpred)
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> dat2 <- rbind.data.frame(dat, outdat)

> mod2 <- lm(resp ~ pred, dat2)

> summary(mod2)

Call:
lm(formula = resp ~ pred, data = dat2)

Residuals:
Min 1Q Median 3Q Max

-7.264 -4.411 -3.332 -1.173 63.607

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3384 3.8065 0.352 0.727
pred 0.6425 0.1259 5.104 4.97e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.46 on 51 degrees of freedom
Multiple R-squared: 0.3381, Adjusted R-squared: 0.3251
F-statistic: 26.05 on 1 and 51 DF, p-value: 4.972e-06

> plot(mod2, which = 5)

I created 3 outliers whose relationship between the response and predictor were very different
from the rest of the data. These data are shown on the plot (Figure ?), where they are labelled as
outliers. Also, notice the substantial decrease in the Pearson R2 with the outliers in the model. To
remove them from the regression simply use the subset argument to remove the rows.

> mod3 <- lm(resp ~ pred, data = dat2, subset = -c(51, 52, 53))

> summary(mod3)

Call:
lm(formula = resp ~ pred, data = dat2, subset = -c(51, 52, 53))

Residuals:
Min 1Q Median 3Q Max

-2.46046 -0.57122 -0.03414 0.64647 1.83264

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.710399 0.280548 6.097 1.78e-07 ***
pred 0.509888 0.009358 54.486 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9806 on 48 degrees of freedom
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Figure 7.2: Leverage against standardized residuals plot for linear model with outlier. Note the
row number labeled on each outlier

Multiple R-squared: 0.9841, Adjusted R-squared: 0.9838
F-statistic: 2969 on 1 and 48 DF, p-value: < 2.2e-16

The weights argument is often used in bootstrapping (See ??). Random weights can be assigned
to each observation so that they emulate random resampling of the data. Weights can also be used
when there is a additional factor that affects the predictability of the model, but is not included
explicitly in the model formula. In a clinical trial, for instance, subjects may be ranked according to
the likelihood that their response is “valid”. These rankings can be used as weights in the regression
to emphasize “valid” responses over “invalid” ones.

7.1.2 Formulas

The models above illustrate the simplest formula object that can be passed to a model: one
response and one predictor. A formula object is simply a representation of the relationship between
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responses and predictors. The ~ character is used to separted responses from predictors and can be
thought of as “...is a function of...”. So, the formula y~x means “response y is a function of predictor
x”.

When there are multiple predictors, they can have additive effect or a multiplicative effect on the
response. These effects are specified with + and *, respectively. The formula weight~height+weight
can be traslated as “response weight is a function of the additive effects of height and weight”. The
formula weight~height*width can be translated as “response weight is a function of the multi-
plicative effects of height and weight”. Another way to think about multiplicative effects is that
they are the summation of all individuals effect of the predictor and the interaction effects of the
predictors:

Yi = β0 + β1X1,i + β2X2,i + β3X1,iX2,i + εi (7.1)

ε ∼ N
(
0, σ2

)
(7.2)

Interaction effect can also be written explicitly using a colon to separate predictors. So,
weight~height+width+height:width is equivalent to weight~height*width.

Numeric constants can also be added to formula objects. The formula y~(a+b)^2 specifies the
model:

Yi = β0 + (β1ai + β2bi)
2 + εi (7.3)

ε ∼ N
(
0, σ2

)
(7.4)

Formulas can also contain a - to remove particular components from the model. y~a*b-a:b is
eqivalent to y~a+b. While the usage - may not apparent immediately, it will become very important
when suites models.

The intercept of a model has the special symbol 1 in formulas. An intercept is included by
default in all formulas even though it is not written explicity in the formula. If for some reason, you
need the intercept of a model to be 0, then you can simply remove the intercept from the model
(y~a+b-1).

The one final character that has a special interpretation in formulas is the period. A pe-
riod stands for “every other variable”. So, if you have a dataframe with columns y, a, b, and
c, the formula y~. when called with the data argument equal to the dataframe is equivalent to
y~a+b+c. The formula y~.*. is equivalent to y~a+b+c+a:b+b:c+a:c, all 1st and 2nd order ef-
fects. The formula y~.*.*. includes all primary, secondary, and tertiary effects and is equivalent
to y~a+b+c+a:b+b:c+a:c+a:b:c or y~a*b*c.

Formulas are used not only in statistical modesl in R, but in plotting as well. This makes it
easy to go from tabular results to graphical ones without too much thought on the part of the user.
In our lm example:

Figure 7.1.2

> lm(resp ~ pred, data = dat)

Call:
lm(formula = resp ~ pred, data = dat)

Coefficients:
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(Intercept) pred
1.7104 0.5099

> plot(resp ~ pred, data = dat)
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Figure 7.3: Scatterplot generated using a formula object

Because we have used the formula construct, the call to the model is identical to the scatter
plot call.

7.1.3 Alternatives

It has been intimated that the most of the arguments to lm function are constant across many
different statistical models. Here, I provide a brief overview of some commonly used models. It
is by no means an exhastive list. There are thousands of R packages and most of them have a
statistical model function of some sort in them. Good developers are aware of the transparency
of the general lm arguments, and try to make their function definitions conform closely to these
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specification with arugments like formula, data, and weights. So, you should be able to install
virtually any package and develop models with that package very quickly. The most common
statistical models are available in the stats package which is loaded by default when R starts.

glm This function is used for generalized linear models. These model are common for data that
do not fit the assumptions of standard linear models. Foremost among these are data where
the responses are binary (logistic regression) or counts (Poisson regression). glm accepts
virtually the same arguments and lm with the addition of a family argument which specifies
the structure of the errors and the transformation used. For logistic regression the family
should be binomial (whose default tranformation is the logit). For poisson regression the
family should be poisson (whose default transformation is the log function).

> logitInv <- binomial()$linkinv

> pred <- sample(1:50, 50, replace = T)

> err <- rnorm(50)

> resp1 <- round(exp(0.1 + 0.001 * pred + err))

> resp2 <- round(logitInv(0.2 * pred + err))

> dat <- data.frame(resp1, resp2, pred)

> dat[1:5, ]

resp1 resp2 pred
1 0 1 6
2 8 1 22
3 49 1 16
4 1 1 41
5 1 1 49

> glm(resp1 ~ pred, family = poisson)

Call: glm(formula = resp1 ~ pred, family = poisson)

Coefficients:
(Intercept) pred

1.34323 -0.02349

Degrees of Freedom: 49 Total (i.e. Null); 48 Residual
Null Deviance: 345
Residual Deviance: 333.4 AIC: 415.5

> glm(resp2 ~ pred, family = binomial)

Call: glm(formula = resp2 ~ pred, family = binomial)

Coefficients:
(Intercept) pred

1.6903 0.1649
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Degrees of Freedom: 49 Total (i.e. Null); 48 Residual
Null Deviance: 9.804
Residual Deviance: 7.762 AIC: 11.76

gam This function is used for generalized additive models (GAMs). It is avaiable in the package
mgcv which comes with the standard R distribution but is not loaded by default. Rather than
assuming a constant linear relationship between predictor and responses, GAMs fit a spline
to one or more predictors. The formula for the gam function contains the special construct
s(pred) for predictors to which a spline is fitted. GAMs are useful for distinguishing the
relative importance of predictors, but are of little use for predictive purposed since GAMs are
almost by definition overfitted.

> library(mgcv)

> pred1 <- sample(1:50, 50, replace = T)

> pred2 <- sample(1:50, 50, replace = T)

> resp <- rnorm(50)

> mod <- gam(resp ~ pred1 + s(pred2))

> summary(mod)

Family: gaussian
Link function: identity

Formula:
resp ~ pred1 + s(pred2)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.285850 0.257873 1.108 0.273
pred1 -0.007212 0.007797 -0.925 0.360

Approximate significance of smooth terms:
edf Ref.df F p-value

s(pred2) 1 1.5 0.184 0.769

R-sq.(adj) = -0.0167 Deviance explained = 2.48%
GCV score = 0.70407 Scale est. = 0.66183 n = 50

anova This function performs a standard analysis of variance (ANOVA) for a continuous response
against one or more categorical predictors (factors). It is included here because it takes
as its argument the output of a linear model. It should be noted that lm works just fine
with both factors and continuous variables. When used in combination with lm this is often
referred to as analysis of covariance ANVOCA. The output of anova is slightly different than that
of lm. anova output is focused on the standard ANOVA output, namely, the significance of
differences between versus within groups, while lm output focuses on the contrasts of different
factors levels.
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> pred1 <- gl(5, 10)

> pred2 <- gl(2, 25, labels = c("a", "b"))[sample(1:50)]

> err <- rnorm(50)

> resp <- 10 + sapply(pred1, function(x) {

+ switch(x, 2, 10, 3, 4, 1)

+ }) + sapply(pred2, function(x) {

+ switch(x, 5, 3)

+ }) + err

> dat <- data.frame(resp, pred1, pred2)

> mod.lm <- lm(resp ~ pred1 + pred2, data = dat)

> anova(mod.lm)

Analysis of Variance Table

Response: resp
Df Sum Sq Mean Sq F value Pr(>F)

pred1 4 482.21 120.55 154.326 < 2.2e-16 ***
pred2 1 58.54 58.54 74.933 4.698e-11 ***
Residuals 44 34.37 0.78
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(mod.lm)

Call:
lm(formula = resp ~ pred1 + pred2, data = dat)

Residuals:
Min 1Q Median 3Q Max

-1.72886 -0.59850 0.09146 0.55377 1.54302

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.2203 0.3084 55.841 < 2e-16 ***
pred12 8.2269 0.3961 20.769 < 2e-16 ***
pred13 1.2940 0.3987 3.246 0.00224 **
pred14 1.7316 0.3987 4.343 8.14e-05 ***
pred15 -0.9890 0.3961 -2.497 0.01635 *
pred2b -2.2561 0.2606 -8.656 4.70e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8838 on 44 degrees of freedom
Multiple R-squared: 0.9402, Adjusted R-squared: 0.9334
F-statistic: 138.4 on 5 and 44 DF, p-value: < 2.2e-16
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7.2 Model Selection

We won’t have time for this.

7.3 Bootstrapping

We won’t have time for this.
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Session 8

Plotting

One of the great advantages of R is the flexibility of plotting functions it offers. R provides a wide
variety of plotting functions from high-level (e.g. plots using only formulas) to low-level (drawing
individual shapes). A great reference for R plotting is: Murrell, P. 2005. R Graphics. . This book
covers in much greater detail the concepts that I summarize here.

R plots are highly customizable. You can change every aspect of a given plot from the symbols
used for plotting points to the length and position of tick marks on the axes. As a consequence,
generating a manuscript-ready plot often requires more lines of code than a typical statistical
analysis does. Customized plots are ideal candidates for encapsulation in functions. You pass your
data as an argument to the function, and the function generates the specific plot you are trying to
acheive.

8.1 Basic Plotting

All plots in R work are built on the transparency model. Imagine a plot being built by laying
successive transparencies on an overhead projector (the old man’s power-point). You start with a
basic plot transparency, and once you lay it on the overhead it can no longer be edited. So, you
might start by laying a sheet with the axes down. Then, you would add a sheet that just had the
points. Finally you would add a best-fit line transperency to complete the plot. The finished plot
looks like a scatterplot with a regression line, but it was built by successively adding the different
pieces of the plot on top of each other. Any part of the transparency that has a graphic on it will
cover up the graphics on the transparencies below it. So, in the example above, the best-fit line
would appear on top of the points of the scatter plot, and cover any points that it intersected.

The transparency model is another reason why writing plots in functions is a good idea. In our
scatterplot example, suppose that after creating the plot, we discover that our tick marks are not
long enough. Well, the tick mark were the first tranpency we laid down. In order to change the
length of the tick marks, we have to start all over again laying each transparency down in order.

The general command for making a high-level plot is plot. Unfortunately, the help files for the
general plot function are somewhat confusing and scattered. For instance, the usage of according
to the help file is plot(x, y, ...). The ... arguement can be an enormous ammount of different
arguments. The only ones listed on the plot help page are type (for choosing a line, point, step
plot, etc.), and the plot labelling arugments (main,sub,xlab, and ylab. The help page redirects you
to three other help pages: par, plot.default, and plot.formula. Of those three, the par page
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is the most helpful. Using the par function you can set a wide variety of plot characteristics such
as whether or not the axes should be log transformed or whether you have more than one plot on
a page. I do not go over all the options for the par function here, but it should always be the first
option when looking for help customizing plots. Many of the arguments to par can be passed to
directly to a plot function. So, for instance, the argument pch which stands for plotting character
is part of the par aruguments, but can be passed to a stanard plotting function plot(y~x,pch=16)
(Note: you have to look at the help file for points to see all the available settings for pch).

We have already used the function plot.formula during our discussion on model formulas.
The part of the function name after the period specifies the class of objects that can be plotted
by that function. So, when a call is a made using plot(y~x), R sees the first arugment is of class
formula and chooses the correct plotting funcion plot.formula to make the plot. The same is
true of linear models, whose class is lm. When you pass a linear model as the first argument to the
plot function, R looks up the function plot.lm and makes the series of 4 plots that help verify the
assumptions of linear models.

8.1.1 Scatterplots

The simplest plot in R is a scatterplot. Given a predictor and response variable, a scatterplot is
simply the data points placed on the in the graphing region. We can make scatterplots using the
stanard plot arguments (x and y) or using a formula object.

> pred <- sample(1:50, 50, replace = T)

> err <- rnorm(50)

> resp <- 1 + 2 * pred + err

> plot(pred, pred)

> plot(resp ~ pred)

To increase the size of points, or any part of the graph for that matter we use the cex arguments.
The cex argument is set to 1 by default, and any change in its value results in a proportional increase
or decrease in the size. So, cex=2 makes the plotting symbols twice as big, and cex=0.5 makes
them half as big. There are counterparts to cex for axis (cex.axis), main title (cex.main), subtitle
(cex.sub), and axis label sizes (cex.lab)

Figure 8.1.1

> plot(resp ~ pred, main = "scatterplot", sub = "a")

> plot(resp ~ pred, main = "scatterplot", sub = "b", cex = 2)

> plot(resp ~ pred, main = "scatterplot", sub = "c", cex = 0.5)

> plot(resp ~ pred, main = "scatterplot", sub = "d", cex.main = 2)

8.1.2 Box Plots and Histograms

Boxplots (boxplot) and histograms (hist) are the typical plots for visualizing one-dimensional
data, or comparing the distribution between groups for analyses such as ANOVA.

Figure 8.1.2

> resp <- rlnorm(50)

> hist(resp)

> boxplot(resp)
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Figure 8.1: Example of using cex to make points larger (b) and smaller (c), and the main title
larger (d)

The arguments to boxplot can also be a formula, where the predictor is a factor that will be
used to generate multiple boxplots. Again, this is very useful for simple ANOVA analyses. The
arugment notch=T is also useful in boxplots. The notches represent a reasonable estimation of the
95% confidence interval for a given factor level.

8.1.2

> pred <- gl(3, 50, labels = c("low", "med", "high"))

> err <- rnorm(3 * 50)

> resp <- 2 + sapply(pred, function(x) {

+ switch(x, low = 5, med = 1, high = 3)

+ }) + err

> boxplot(resp ~ pred, notch = T)
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Figure 8.2: simple boxplot and histogram with normal data

8.1.3 Line Plots

There are two ways to generate lines plots in R. The first is to set the type argument to "l" in the
high-level plot function. This usage is atypical. More often a high-level plot is created beforehand,
for instance a scatter plot, and lines are added to it using the lines function. An important thing
to remember is that lines are drawn using successive points. So, the points must be sorted in order
along the x-axis if the line is to look correct. An easy way to do that is to generate a new sorted
sequence of predictor values, and preict the response variable based on the model using predict.

Figre 8.1.3

> pred <- sample(1:50, 50, replace = T)

> err <- rnorm(50, sd = 5)

> resp <- 1 + 2 * pred + err

> mod <- lm(resp ~ pred)

> plot(resp ~ pred)

> xrng <- range(pred)
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Figure 8.3: Simple boxplot and histogram with normal data. Boxplot of an ANOVA using notch=T

> xseq <- seq(xrng[1], xrng[2], length = 100)

> yseq <- predict(mod, data.frame(pred = xseq))

> lines(yseq ~ xseq, col = "red")

The line in the above plot also makes use of the col argument, which can be added to any plot
and changes the plotting color of the data. col can take integers, hexdecimal RGB values, and
string color names. The available string colors of which there are many can be seen using colors()
function.

A common operation is to fit a spline to a scatterplot. This can be done using the loess
function.

Figure 8.1.3

> pred <- sample(seq(-pi, pi, length = 500), 50, replace = T)

> err <- rnorm(50, sd = 0.1)

> resp <- sin(pred) + err

> plot(resp ~ pred)
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Figure 8.4: Scatter plot with regression line overlain

> mod <- loess(resp ~ pred)

> xrng <- range(pred)

> xseq <- seq(xrng[1], xrng[2], length = 500)

> yseq <- predict(mod, data.frame(pred = xseq))

> lines(yseq ~ xseq, col = "red")

The fitted lines from linear regressions can be built from predicted values as shown above, but
they can also be built from the model coefficients. The function abline adds a line to a plot that
has a given slope and intercept, or alternatively a straight vertical or horizontal line. The example
below introduces another par paramters that is useful for lines: lty which stands for line type.
The defaut is 1, a solid line, increasing integer values of lty cause various dashed and dotted lines
to be generated. See ?lines for more details.

8.1.3

> plot(resp ~ pred, mod$model)

> abline(mod$coef, col = "red")
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Figure 8.5: scatterplot with loess smoother
’
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> plot(resp ~ pred, mod$model)

> abline(mod$coef, col = "red")

> abline(h = 20, lty = 2)

> abline(v = 20, lty = 3)

Figure 8.6: Scatterplot with a regression line and reference lines plotted with abline

> abline(h = 20, lty = 2)

> abline(v = 20, lty = 3)

8.1.4 Bar Plots

Many journals do not accept boxplots, and instead prefer grouped data to be shown as barplots
with standard errors. There are 2 ways to generate barplots, one using standard graphics, and
one using lattice graphics (See ??). The one using lattice graphics (barchart) is slightly easier to
use, but I show the standard graphics function (barplot) here to give an example which uses the
segments command. barplot takes a vector of heights, which might the mean response of a group.
Standard errors can be drawn using any line function, segments. segments draws line segments
instead of a continuous line. It requires four parameters:

x0 a vector of segment starting positions on the x-axis

y0 a vector of segment starting positions on the y-axis

x1 a vector of segment ending positions on the x-axis

y1 a vector of segment ending positions on the y-axis

Using barplot also illustrates the fact that plotting functions, just like any other function can
have a return value. In the case of barplot, the return value is a vector of locations on the x-axis
where each bar was drawn. This makes choosing the x values for the segments easy, just pass the
return value of bar plot the x0 and x1 arguments of segments.

Figure 8.1.4

> levs <- c("low", "med", "high")

> pred <- gl(3, 50, labels = levs)

> err <- rnorm(3 * 50, sd = 5)

> resp <- 2 + sapply(pred, function(x) {

+ switch(x, low = 5, med = 1, high = 3)

+ }) + err

> mu <- tapply(resp, pred, mean)

> se <- tapply(resp, pred, function(x) {

+ sd(x)/sqrt(length(x))

+ })

> ul <- mu + se

> ll <- mu - se
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Figure 8.7: Barplot with standard errors

> xbars <- barplot(mu, names = levs, ylim = c(0, max(ul)), xlab = "treatment",

+ ylab = "value", )

> segments(xbars, ul, xbars, ll)

8.1.5 Multiple Plots

One common task in making graphics for display is putting more than one plot on a graphic device.
This is accomplished by setting the par parameters mfcol or mfrow which stand for “multi-figure
by column” and “multi-figure by row”. The value of these arguments is a vector of length two which
specifies (in the case of mfrow) the number of rows and number of columns of figure output. This
argument is set before any plots are made. Then, when a new call is made to plot, plotting begins
in the upper left had corner. The next call to a high-level plotting functions puts a figure in the
next row or column depedning on whether you set mfrow or mfcol. Graphic panels are added until
the entire matrix of graphics is filled. Then, when a new plot is called, the old grid is erased, and
the new plot is placed in the upper left hand corner. Again, the par settings are held until the
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graphic device is close, so it is especially important to resent the par arguments after creating a
multiple graphic figure, or all subsequent calls to plot will continue to place plots in the graphic
matrix. In the example below, I use mfrow to generate a bivariate density plot with marginal plots
for each variable. I also use an example of 3d plot, contour.

Figure 8.1.5

> s1 <- seq(-3, 3, length = 100)

> s2 <- seq(0.1, 4, length = 100)

> d1 <- dnorm(s1)

> d2 <- dgamma(s2, 3, 2)

> d12 <- d1 %o% d2

> opar <- par(no.readonly = T)

> par(mfrow = c(2, 2))

> contour(x = s1, y = s2, z = d12, xlab = "V1", ylab = "V2")

> plot(d2, s2, type = "l", xlab = "density", ylab = "V2")

> plot(s1, d1, type = "l", ylab = "density", xlab = "V1")

> par(opar)

8.2 Lattice Graphics

There is a special graphics package in R called lattice. This package is used to produce trellis
graphics. Trellis graphics are multi-panel graphs where each panel repesents the levels of one or
more predictor variables. They are very useful for visualizing multivariate regression data and
results. They also are built strongly upon the formula structure of statistical models. There is an
additional symbol for use in lattice plot formulas, |. Variables after the bar, represent grouping
variables. These are the variables that will be varied across the panels of the lattice plot.

Lattice graphics are not loaded by default in R. You must load the lattice library in each session
where you will use it.

Figure 8.2

> library(lattice)

> pred1 <- gl(3, 50, labels = c("low", "med", "high"))

> pred2 <- sample(1:50, 150, replace = T)

> err <- rnorm(150)

> res <- 2 + 2 * pred2 + 3 * sapply(pred1, function(x) {

+ switch(x, 1, 2, 3)

+ }) * pred2 + err

> xyplot(resp ~ pred2 | pred1)

Adding elements to a lattice plot does not work just like adding elements to a standard graphic.
Each panel in a lattice graphic is drawn using a panel function, which is one of the arguments to
a lattice plot. To add an element to each panel, say a best-fit line over the scatter plot, you must
add the line to the panel function. Selections the many built-in panel functions are listed below.
You may also write your own customized panel function. Each panel function can be called as a
lattice function in its own right. For instance, you can use panel.densityplot as part of the panel
functionwithin a call to xyplot, or you can just call density.plot to have a lattice density plot
only.
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Figure 8.8: Multifigure plot showing multiple regression resuls, with marginals

panel.abline Add a line to a plot

panel.average Add a mean line to a plot

panel.barchart Default Panel Function for barchart

panel.bwplot Default Panel Function for bwplot

panel.cloud Default Panel Function for cloud

panel.curve Add a curve from an expression

panel.densityplot Default Panel Function for densityplot

panel.dotplot Default Panel Function for dotplot

panel.functions Useful Panel Functions
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Figure 8.9: simple lattice plot of a response versus a predictor across a grouping variable
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panel.histogram Default Panel Function for histogram

panel.levelplot Default Panel Function for levelplot

panel.loess Add a loess smoother to a pot

panel.lmline Add a best fit regression line

panel.pairs Default Superpanel Function for splom

panel.parallel Default Panel Function for parallel

panel.rug Add a rug plot to an axis

panel.qqmath Default Panel and Prepanel Function for qqmath

panel.qqmathline Useful panel function with qqmath

panel.stripplot Default Panel Function for stripplot

panel.superpose Panel Function for Display Marked by groups

panel.violin Panel Function to create Violin Plots

panel.xyplot Default Panel Function for xyplot

Below is an example of a lattice plot with multiple panel functions in a single plot, using the
data generated in the previous code block.

Figure 8.2

> pan.fun <- function(x, y, ...) {

+ panel.xyplot(x, y, ...)

+ panel.lmline(x, y, col = "red", ...)

+ panel.abline(h = mean(y), lty = 3, ...)

+ panel.abline(v = mean(x), lty = 3, ...)

+ }

> xyplot(resp ~ pred2 | pred1, panel.function = pan.fun)

8.3 Execises

Using the code you created in the previous set of exercises:

1. Regress age against diameter and wetness.

2. Regress the number of stems against wetness.
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Figure 8.10: Lattice plot with a customized panel function which generates both a scatterplot,fitted
line, and x,y averages.
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