
Getting Started in R for Phylogenetics

Marguerite A. Butler1,2, Brian C. O’Meara3, Jason Pienaar1,4, Michael
Alfaro5, Graham Slater6, and Todd Oakley7

1Department of Zoology, University of Hawaii, Honolulu, HI 96822
2mbutler@hawaii.edu

3National Evolutionary Synthesis Center, 2024 West Main Street, Suite
A200, Durham, NC 27705, bcomeara@nescent.org

4jasonpienaar@gmail.com
5UCLA address, michaelalfaro@ucla.edu

6gslater@ucla.edu
7todd.oakley@lifesci.ucsb.edu

March 12, 2018

2

Contents

1 Preliminaries 11

1.1 Computer Requirements and Installing R 11

1.1.1 Installing from source . 11

1.2 R packages . 12

1.3 General R References . 12

1.4 Help! and Useful References . 13

1.4.1 general R help . 13

1.5 For Folks who get serious about R programming 13

2 Playing with R for the first time 15

2.1 Instructions . 15

2.2 R session . 16

2.2.1 Vectors . 16

2.3 Functions . 19

2.3.1 Generating Random Deviates . 20

2.3.2 Building a dataframe . 24

2.4 Save Your History . 26

2.5 Insert Comments . 26

2.6 Exercises . 26

3 Simple Comparative Analyses in R 29

3.1 Why use comparative methods (and a bit about how they work) 29

3

4 CONTENTS

3.2 Running simple comparative analyses using ape: or a tour through R using
phylogenetic examples . 30

3.2.1 Getting help . 30

3.2.2 Directories and File organization 32

Course Directory Organization . 32

Moving through the directories 34

3.2.3 Running Independent Contrasts using ape 35

3.2.4 The Brownian Motion Model of Evolution 38

3.2.5 Phylogenetic GLS . 40

3.2.6 Ancestral Reconstruction Methods 42

4 Finding Help 47

4.1 When you know the name of the function 47

4.2 Don’t know the name of the function . 48

4.3 Package-specific help . 49

5 Creating Data Objects and Plotting 51

5.1 Data objects . 51

5.2 Simple plotting . 54

5.2.1 Bivariate plot . 54

5.2.2 Univariate plot . 55

6 Saving your work as R scripts 59

6.1 Script template . 60

6.1.1 Writing pdf to file . 61

6.1.2 History file . 62

6.2 Remember the workspace . 63

6.3 Exercises . 63

7 The Workhorse Functions of Data Manipulation 65

7.1 Indexing and subsetting . 65

CONTENTS 5

7.1.1 Vectors . 66

7.1.2 Matrices and Dataframes . 68

7.1.3 Lists . 72

7.2 String Matching . 73

7.3 Ordering Data . 74

7.4 Matching . 75

7.5 Merging . 78

7.6 Reshaping R Objects . 80

8 Data Input and Output 85

8.1 Getting your data into R . 85

8.1.1 read.csv . 85

8.2 Summary statistics on your data . 87

8.2.1 merge . 88

8.3 write.csv . 89

8.4 save . 89

8.5 Saving plots . 90

8.5.1 pdf . 92

8.6 Messier input files . 93

8.6.1 Input files generated by data loggers 93

9 All about trees by Brian O’Meara 97

9.1 Tree objects . 97

9.1.1 Newick . 98

9.1.2 phylo (ape 1.9 or above) . 100

9.1.3 ouchtree . 102

9.1.4 phylo4 (phylobase) . 104

9.2 Getting trees into R . 106

9.2.1 Using ape . 106

9.2.2 Using phylobase . 107

6 CONTENTS

9.3 Going from one format to another . 107

9.4 Exercises . 108

10 Working with Trees by Michael Alfaro 111

10.1 Introduction . 111

10.2 Getting Started . 111

10.3 Basic Tree Plotting . 113

10.4 Tree Structure . 114

10.5 More Tree Plotting Tricks . 116

10.6 Tree Input and Output . 117

10.6.1 Reading Trees . 117

10.6.2 Plotting Support Symbols on Trees 118

10.6.3 Writing Trees . 119

10.6.4 Manipulating Tree Labels and Branch Lengths 120

10.6.5 Miscellaneous Tree Commands . 122

11 Ancestral State Reconstructions by Graham Slater 125

12 Verification: Computing Phylogenetic GLS ”by hand” 133

13 Sweave 141

13.1 The Notion of Reproducible Results . 141

13.2 A bit about LATEX . 141

13.3 Simple Sweave . 143

13.4 Sweave -> LaTeX . 143

13.5 LaTeX -> pdf . 143

13.6 Stangle . 143

13.7 Best Practices . 144

13.8 Exercises . 145

14 S3 vs. S4 Objects 147

CONTENTS 7

14.1 What is an object? . 147

14.2 Object example: A Medieval Video Game (remember Dungeons and drag-
ons?) . 148

14.3 S3 Classes . 148

14.3.1 No Validation . 150

14.3.2 Methods dispatch . 150

14.4 S4 Classes . 151

14.4.1 What are the di↵erences for users? 152

15 Phylobase 153

15.1 Some Useful Features . 153

15.2 Accessing help . 154

15.3 Creating Objects . 154

15.4 Tree and Data Formats . 155

15.4.1 phylo4 . 155

15.4.2 phylo4d . 156

15.5 Accessing Internal Elements of S4 Objects 159

15.6 Subsetting . 160

15.7 Treewalking . 164

15.8 Example: Generating a set of trees with simulated branch lengths 166

15.8.1 Branch lengths drawn from a common distribution 166

15.8.2 Branch lengths drawn from normal distributions with separate means170

16 Stochastic Simulations 175

16.1 Brownian motion model . 175

16.2 Exercises . 178

16.3 Making movies . 178

16.4 RGL graphics . 179

17 Introduction to OU Models 181

17.1 The OU Model for Comparative Analysis 181

8 CONTENTS

17.2 Introduction to Likelihood . 182

17.3 ouch . 182

17.3.1 The Data . 182

17.3.2 Plotting ouchtrees . 185

17.3.3 Fitting models . 186

17.3.4 hansentree and ouchtree methods 188

17.3.5 painting regimes on trees . 191

18 Bivariate ouch 197

18.0.6 The Bivariate model . 197

18.0.7 No Correlations . 197

18.1 Correlated Evolution . 198

18.2 Implementation in ouch . 198

18.3 Exercises . 204

18.4 Variations of the OU Model — Brian? 204

19 Phylogenetic Community Analysis by Todd Oakley 205

20 Writing Simple Packages by Jason Pienaar and Marguerite Butler 223

20.1 Cross-platform compatibility . 224

20.2 Description File . 225

20.3 Other directories . 226

20.3.1 Documentation . 226

20.3.2 Vignettes . 227

20.4 Checking the entire package . 227

20.5 Building the package . 227

20.6 Distributing the package . 228

20.6.1 CRAN . 228

20.6.2 R-forge . 228

20.6.3 Creating Binaries . 228

CONTENTS 9

21 System Commands by Brian O’Meara 229

21.1 Exercises . 232

22 Other Packages Available For Comparative Analysis 233

22.1 ade4 . 233

22.2 geiger . 234

22.3 picante . 234

Bibliography 235

10 CONTENTS

Chapter 1

Preliminaries

1.1 Computer Requirements and Installing R

This chapter is about the software we will be using in class. If you’ve installed these
software a long time ago, please update to recent versions to avoid compatibility issues.

Computers I will be using a macintosh running El Capitan (OS 10.11.6), however, R
is open source and available on PC and Linux as well. For the most part, the R
commands are cross-platform compatible. The only exceptions are those that deal
directly with other programs on your computer (the main one being to bring up a
new graphics window – quartz() on a mac, and x11() on a PC or Linux).

R version 3.4.0 (Amusingly nicknamed ”You Stupid Darkness”. The later versions in a
series usually have bug fixes). You can install R from the binaries available at the R
website http://www.r-project.org. They are available as disk images and very
straightforward to use. On the left Menu bar, click on“CRAN”(the Comprehensive
R Archive Network). Choose a mirror (the closest geographically), then click on
your operating system (MacOS X) and click on R-3.4.0.pkg. Follow the directions
from there.

1.1.1 Installing from source

If you would like to be able to install packages from source, you will need these compo-
nents: C compiler (gcc), a fortran compiler (e.g., gfortran), and X11. If you don’t know
what this is about, it’s OK – just skip it. If you do want to do it, take a look at the
instructions on: http://cran.r-project.org/bin/macosx/tools

Xcode Tools This contains the C/C++ compiler. Install from the system disks that

11

http://www.r-project.org
http://cran.r-project.org/bin/macosx/tools

12 CHAPTER 1. PRELIMINARIES

came with your computer. If you don’t have the disks, you can also download it
from the Apple Developers site after signing up for a free account.

gfortran Install from the link above (tools directory on the CRAN install page).

X11 Comes with OS X, but it may be an optional install.

You can find detailed instructions on how to install these software components and links
to the software itself at the R website , under FAQ’s > R for Mac OS X FAQ > Building
R from sources.

Note: for people who’ve recently upgraded their systems, please make sure you have
Xcode Tools and X11 installed from the discs that came with your computer (they have
to be the correct version for your new OS. For example, you can’t use your Xcode Tools
from Tiger on your mac running Snow Leopard).

1.2 R packages

Many of the packages that you will ever use are available on CRAN. The easiest way to
install from CRAN is to do it from within R. From the ”Packages & Data”menu option,
choose ”Package Installer”. You may have to choose a mirror if you haven’t done so
already (choose a geographically close one). The package installer should open up with
“CRAN (binaries)” already selected. Click on“Get list”, which will refresh the menu with
all the available packages and the version numbers that you have installed. Highlight the
packages that you want to install, choose “Install Dependencies” then click on “Install
Selected”. You can also download the packages from the R website, on the left menu bar
click on CRAN.

Install the following from CRAN (binaries):

ggplot2

pspline

ks

1.3 General R References

An introduction to R A comprehensive and easy-to-follow tutorial produced by the
R Development Core Team.

R for Beginners A tutorial by Emmanuel Paradis.

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

1.4. HELP! AND USEFUL REFERENCES 13

1.4 Help! and Useful References

1.4.1 general R help

Jonathan Baron’s R help page Bookmark this page! It is the best search engine to
find R help. It searches the huge archives of the R-help listserv as well as all R
documentation pages. For more technical help, you can also include the R-dev
(developers) listserv in the search.

1 page R reference card by Jonathan Baron.

4 page R reference card by Tom Short.

1.5 For Folks who get serious about R programming

Programming with Data: A guide to the S Language by John M. Chambers. 2004.
Springer. This is written by one of the authors of the S language, which R is based on.
It has a lot of details that you will never find in the glossy books.

http://finzi.psych.upenn.edu/
http://www.psych.upenn.edu/~baron/refcard.pdf
http://www.rpad.org/Rpad/R-refcard.pdf

14 CHAPTER 1. PRELIMINARIES

Chapter 2

Playing with R for the first time

2.1 Instructions

In this exercise, I want to introduce you to some of the built-in help facilities and docu-
mentation in R, and get you started with manipulating variables in R.

• If you haven’t already done so, make a directory for this class. I would recommend
naming it “Rclass” and putting it at some accessible location in your user directory
(like at the top level of your User directory on a Mac, or at C:/ on a windows
machine). On my computer it would be like so: Fig. 2.1.

• Also within this directory, make another directory called ”data”. You will store all
of your data files in there.

• Start up R.

• Move to your Rclass directory by using the setwd("path to Rclass ") command.

> setwd("~/Rclass")

On a PC it will be something like:

> setwd("C:/Rclass")

• Open the help facility using the command

> help.start()

• Click on ”An Introduction to R”. The is ”the Bible” for learning R.

15

16 CHAPTER 2. PLAYING WITH R FOR THE FIRST TIME

Figure 2.1: Rclass directory for saving course work. Make a folder in a convenient location
on your computer, like at the top level of your user directory. When you are done with
the course, you can move the whole folder to a permanent location with your other R
code.

2.2 R session

Later, when you have more time, you will want to read and try out all of the section
“Simple manipulations; numbers and vectors” (2.1 – 2.8). Please type the commands in
yourself rather than cut-and-pasting. The typing helps develop ”finger memory” which
you will need to become proficient at programming.

2.2.1 Vectors

For now, let’s try playing around with R. Create a variable or “object” named height
and save a value of 10. The arrow means to put “10” into height:

> height <- 10

To see the value of height, type it and press return:

> height

[1] 10

2.2. R SESSION 17

Now let’s create a vector, a variable with several elements or “observations”:

> height <- c(10, 12, 51, 24, 32)
> height

[1] 10 12 51 24 32

The c() function combines values into a vector or a list. You will use it a lot. Create a
vector of weights:

> weight <- c(40, 41, 50, 43, 64)
> weight

[1] 40 41 50 43 64

Whenever I am writing new code, I ALWAYS check to make sure the code produced the
results I wanted. You should do the same. Verify that EACH step worked correctly. This
means without errors!

Let’s create our first plot. We’ll use the plot() function, which is a generic function for
just about any type of R object:

> plot(height, weight)

18 CHAPTER 2. PLAYING WITH R FOR THE FIRST TIME

●

●

●

●

●

10 20 30 40 50

40
45

50
55

60

height

w
ei
gh
t

Voila!! Our first plot. Beautiful. Now suppose that we have males and females in the
data, so we’d like some categorical variables for sex. In R, it’s easy to do. Just create a
character vector:

> sex <- "male"
> sex

[1] "male"

> sex <- c("male", "male")
> sex

[1] "male" "male"

2.3. FUNCTIONS 19

2.3 Functions

We can create an object sex that contains one or more character strings in it, and use
the generic c() function to create a vector of character strings. But it can get tedious
typing the same thing over. So we can use the rep() function to repeat values:

> sex <- rep("male", 3)
> sex

[1] "male" "male" "male"

> sex <- c(sex, "female", "female")
> sex

[1] "male" "male" "male" "female" "female"

> sex <- c(rep("male", 3), rep("female", 2))
> sex

[1] "male" "male" "male" "female" "female"

So what just happened? Why do the last two lines of code give the same result? In R,
as in most programming languages, the code is nested. The innermost function or bit of
code is evaluated first, and whatever is returned is then the argument for the next outer
bit of code. So in the first line, we take three copies of “male” and shove it into sex.
In the second line, we take the object sex, which is now a vector of three “male”, and
combine it with two copies of “female”, into a vector of 5 elements. In the last line, first
we create a vector of 3 males using the rep function, and then a vector of 2 females, and
combine these two vectors together into a vector of 5 elements.

In fact, the last line above is equivalent to the following (of course you would never
actually write a line like the one below, the nested c() are completely unnecessary, this
is just for demonstration):

> sex <- c(c("male", "male", "male"), c("female", "female"))
> sex

[1] "male" "male" "male" "female" "female"

You can see that using functions like rep() and seq() for sequence can save you a lot
of time, when you have lots of repeated data.

20 CHAPTER 2. PLAYING WITH R FOR THE FIRST TIME

> sex <- c(rep("male", 50), rep("female", 50))
> sex

[1] "male" "male" "male" "male" "male" "male" "male" "male" "male" "male" "male"
[12] "male" "male" "male" "male" "male" "male" "male" "male" "male" "male" "male"
[23] "male" "male" "male" "male" "male" "male" "male" "male" "male" "male" "male"
[34] "male" "male" "male" "male" "male" "male" "male" "male" "male" "male" "male"
[45] "male" "male" "male" "male" "male" "male" "female" "female" "female" "female" "female"
[56] "female" "female" "female" "female" "female" "female" "female" "female" "female" "female" "female"
[67] "female" "female" "female" "female" "female" "female" "female" "female" "female" "female" "female"
[78] "female" "female" "female" "female" "female" "female" "female" "female" "female" "female" "female"
[89] "female" "female" "female" "female" "female" "female" "female" "female" "female" "female" "female"

[100] "female"

2.3.1 Generating Random Deviates

Now let’s go back to our original height and weight variables and make up some larger
samples. This time, let’s use the random number generator function rnorm(), which
generates random normal deviates. We can specify the mean and standard deviation as
below. Let’s make the males with larger mean, but same standard deviation. To save
paper, I’m not going to display the object contents to the screen, but you should keep
doing it.

> height_m <- rnorm(50, mean=55, sd=5)
> height_f <- rnorm(50, mean=45, sd=5)

How do we combine these into one vector?

> height <- c(height_m, height_f)

We could have also created the height vector in one step. While we’re at it, let’s also
make up some data for weight. Let’s pretend that this data is for children in inches and
pounds:

> height <- c(rnorm(50, mean=55, sd=5), rnorm(50, mean=45, sd=5))
> weight <- c(rnorm(50, mean=80, sd=10), rnorm(50, mean=65, sd=8))

In general, it’s best to keep your coding simple, especially when you are learning. Write
clean code that is easy for you to understand. If it takes an extra line, it’s not a big
deal. The computer is VERY fast, you will not slow down your program this way. On
the other hand, you can easily confuse yourself and make BIG MISTAKES by trying to
be too clever.

2.3. FUNCTIONS 21

To plot by sex, we need to do tell R that the object sex contains categories or “factors”.
We do this using the factor() function:

> sex <- factor(sex)
> sex

[1] male male male male male male male male male male male male male male
[15] male male male male male male male male male male male male male male
[29] male male male male male male male male male male male male male male
[43] male male male male male male male male female female female female female female
[57] female female female female female female female female female female female female female female
[71] female female female female female female female female female female female female female female
[85] female female female female female female female female female female female female female female
[99] female female

Levels: female male

sex is now a factor, or categorical variable with two levels. Now we can plot with sex.
Note that in R, when you make a bivariate plot where the first variable is a factor, it
will create a barplot by default. If you put the quantitative variable first, you will get a
scatterplot:

> plot(sex, height, main="plot(sex, height)")
> plot(height, sex, main="plot(height, sex)")

We added titles to the plots with the main="mytitle" argument, which is optional.

22 CHAPTER 2. PLAYING WITH R FOR THE FIRST TIME

female male

35
40

45
50

55
60

65
70

plot(sex, height)

●● ●● ● ●●●● ●●● ● ● ●●● ●●●●● ●● ●●●●● ●● ●●●● ● ●● ● ●● ●●●● ●●● ● ●

● ● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ●● ● ●● ●●● ●● ●●●● ● ●● ●●● ● ●●●●

35 45 55 65

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

plot(height, sex)

height

se
x

Now, let’s run some statistics on our data. Is a child’s weight related to height? We might
want to run a linear regression, which we so using the lm() or linear model function. It
produces a linear model object, let’s save the output as lm.mf:

> lm.mf <- lm(weight ~ height)

There are several ways to give the linear model argument to lm, I prefer to use the
formula representation weight ~height, which is read weight as a function of height.
You can produce the a summary of the regression using summary(). Often, however, you
want to see an anova table:

> summary(lm.mf)

Call:
lm(formula = weight ~ height)

Residuals:

2.3. FUNCTIONS 23

Min 1Q Median 3Q Max
-22.252 -6.624 -1.007 5.587 40.851

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.9385 7.6824 6.500 3.37e-09 ***
height 0.4568 0.1550 2.948 0.004 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 11.12 on 98 degrees of freedom
Multiple R-squared: 0.08146, Adjusted R-squared: 0.07208
F-statistic: 8.691 on 1 and 98 DF, p-value: 0.003998

> anova(lm.mf)

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

height 1 1074.6 1074.63 8.6907 0.003998 **
Residuals 98 12118.0 123.65

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Oh wow, there is a very significant e↵ect. But wait! We have boys and girls in the
dataset. We need to add in gender as a covariate:

> lm.mf <- lm(weight ~ sex + height)
> anova(lm.mf)

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 4045.2 4045.2 44.264 1.707e-09 ***
height 1 282.8 282.8 3.094 0.08173 .
Residuals 97 8864.7 91.4

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

See what happened? Actually, males and females are significantly di↵erent, and there
is no relationship between height and weight after accounting for sex. Does this make
sense, given how we generated the data?

24 CHAPTER 2. PLAYING WITH R FOR THE FIRST TIME

Note: Using the “+” between the parameters sex and height means to put them in
as additive factors. If you want to include these as well as interactions, use “*”. For
interactions only (hardly ever done), use “:”. Give it a try. For more explanation, see the
formula help page:

> ?formula

2.3.2 Building a dataframe

The most typical data structure you will use is a dataframe. It is a “record format”
type of layout, with the idea being one row per observation. You may have additional
information or metadata that you want stored with your individual observations. For
example, you may want a unique ID for each individual, and what city they are from,
etc.

Let’s create a unique ID. For some reason, we want each boy numbered from 1 to 50.
Let’s use the seq() function to create a sequence from 1 to 50, and the paste() function
to combine them with “boy”:

> seq(1,50)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[34] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Is the same as:

> 1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[34] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Paste together with the word “boy”:

> boys <- paste("boy", 1:50, sep="")
> girls <- paste("girl", 1:50, sep="")
> ID <- c(boys, girls)

We separated the two parts of the paste with nothing, “”. We could have separated with
a “.” or whatever we want.

Now let’s create a city object. Suppose we collected 25 observations of each sex in
Honolulu and Santa Barbara:

2.3. FUNCTIONS 25

> city <- c(rep("Hon", 25), rep("SB", 25), rep("Hon", 25), rep("SB",25))

We could also repeat the repeat, since the 25 per city is a repeating pattern:

> city <- rep(c(rep("Hon", 25), rep("SB", 25)), times = 2)

This time we had to use the times= option, which means how many times to repeat the
whole sequence. The other popular option is each=, which repeats element by element.
To see the di↵erence more clearly, try this simple example:

> rep(1:5, times=3)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

> rep(1:5, each=3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

Now let’s save all of our dataset together into one neat dataframe:

> dat <- data.frame(ID, sex, height, weight, city)

> dat

For really large datasets (saving paper here, you can print to screen), we can just look
at the beginning and end of our dataframe:

> head(dat)

ID sex height weight city
1 boy1 male 50.74248 88.83133 Hon
2 boy2 male 46.14909 66.38892 Hon
3 boy3 male 53.56522 63.32075 Hon
4 boy4 male 46.36637 87.32131 Hon
5 boy5 male 50.58725 85.69922 Hon
6 boy6 male 62.62308 67.86794 Hon

> tail(dat)

ID sex height weight city
95 girl45 female 34.83214 68.87919 SB
96 girl46 female 43.03704 78.05635 SB
97 girl47 female 47.72882 71.00597 SB
98 girl48 female 40.86659 78.12755 SB
99 girl49 female 40.81870 73.01877 SB
100 girl50 female 41.40929 63.28541 SB

26 CHAPTER 2. PLAYING WITH R FOR THE FIRST TIME

2.4 Save Your History

At the end of your session, save your session history. On a mac, press the little blue and
yellow history icon and you will see the history sidebar appear. Click on “Save History.”
Give it a file name as below. On a PC, use the savehistory function, read the following
help page :

> ?savehistory

You will want to save it with an informative file name like VecPractice.history. For
example:

> savehistory(file="VecPractice.history")

2.5 Insert Comments

Outside of R, open up your history (in a text editor) and clean up your code. Add
comments to help you remember what this code means. Place them in your history, just
before the relevant section. Comments in R are indicated by the # symbol. Anything to
the right of one or more # is considered a comment, and not executed by R.

2.6 Exercises

Work through the section ”Simple manipulations; numbers and vectors” (2.1 – 2.8) in the
Introduction to R – see top of this chapter for how to find it – and answer the questions
below.

1. What is a numeric vector?
Answer: ## A numeric vector is an ordered collection of numbers.

2. Is ordinary arithmetic (+, -, *, /) on vectors in R done element-by-element or using
matrix math? (to test an example, try or think about x*y where:

x =

✓
1
2

◆
y =

✓
5
1

◆

3. What is a sequence?

4. What is an logical value? What is a logical vector?

5. What is a missing value?

2.6. EXERCISES 27

6. What is a character vector?

7. What is an index vector?

28 CHAPTER 2. PLAYING WITH R FOR THE FIRST TIME

Chapter 3

Simple Comparative Analyses in R

Chapter Topics:

• Why use comparative methods?

• Learn how to run independent contrasts, phylogenetic GLS, Ancestral Reconstruc-
tion methods using R package ape

Run modified examples from help files

Simulate some comparative data and run analyses

• Directories and file organization

Skills: Loading and using packages, using functions, practice with ape, plotting, creat-
ing data objects, accessing help, traversing your file directory.

3.1 Why use comparative methods (and a bit about
how they work)

Comparative methods are one of the oldest means for studying adaptation and evolu-
tionary processes in general. Comparative methods were in use prior to Darwin.

See lecture slides.

29

30 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

3.2 Running simple comparative analyses using ape:
or a tour through R using phylogenetic examples

In this section, we will run some comparative analyses using ape. See ape’s homepage
at http://ape.mpl.ird.fr/.

Go to your R console and load the ape package into active memory. Type at the prompt
(”require” is nicer than ”load” because ”load” will just load the package. ”require” checks
if the package is already loaded first):

> require(ape)

3.2.1 Getting help

R has great built-in help facilities. Once you get used to R’s syntax (the form of R
functions and data), you will find them incredibly useful. But first to access the help for
a specific function, you need to know what it is called. Access the main help page for
the package ape:

> help(package="ape")

Notice that as you type help(you start to see the function definition on the bottom of
the console window. It shows you how to call the function (what variables it expects).

Packages are generally a set of functions that are loaded from some (hidden) directory
on your computer into active memory, so that you can use them by name. Now that you
know the names of the functions, you can access specific help pages directly. Try the help
page for independent contrasts:

> help(pic)

Looking at the help page, notice that there are sections (these are common to most help
pages):

Description what it does

Usage the format for calling the function (making it run)

Arguments explanation for each of the arguments, their type, and what they represent

Details more explanation

http://ape.mpl.ird.fr/

3.2. RUNNING SIMPLE COMPARATIVE ANALYSES USING APE: OR A TOUR THROUGHRUSING PHYLOGENETIC EXAMPLES31

Value what is returned from calling the function

Author

References

See Also other functions to check out

Examples Often the most valuable section, with examples that actually work. You can
test them out by cutting and pasting into the R console.

This is modified from the sample code given in the pic documentation and Paradis (2006).
First use the read.tree function to create a phylogenetic tree in R for the primates, save
it in an object (a variable) called ”tree.primates”. Some basic ways to get information
about R objects is to just type the name of the object on the command line (it will return
some info or the value itself), or using a function called summary:

> tree.primates <- read.tree(text="((((Homo:0.21,Pongo:0.21):0.28,Macaca:0.49):
+ 0.13,Ateles:0.62):0.38,Galago:1.00);")
> tree.primates

Phylogenetic tree with 5 tips and 4 internal nodes.

Tip labels:
[1] "Homo" "Pongo" "Macaca" "Ateles" "Galago"

Rooted; includes branch lengths.

> summary(tree.primates)

Phylogenetic tree: tree.primates

Number of tips: 5
Number of nodes: 4
Branch lengths:

mean: 0.415
variance: 0.08208571
distribution summary:

Min. 1st Qu. Median 3rd Qu. Max.
0.1300 0.2100 0.3300 0.5225 1.0000
No root edge.
Tip labels: Homo

Pongo

32 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

Macaca
Ateles
Galago

No node labels.

For trees, perhaps the best thing to do is to plot it:

> plot(tree.primates)

You can resize the pdf window by grabbing the corners. You can also save the plot to a
pdf file using the pdf function, which opens a pdf graphics device driver. Just give your
pdf file a name, then replot the tree, then turn the pdf device o↵ again:

> pdf(file="primatetree.pdf") # turn on pdf device for output
> plot(tree.primates) # plot the tree to the pdf file
> dev.off() # turn off pdf device to return output to the default
> save(tree.primates, file="tree.primates.rda") # save tree in Rdata format

Now, where did the file go? It is saved in your working directory, which on a Mac is
wherever you started the R program, or your home user directory by default. You don’t
want all your work going there. So let’s take a moment to set up some nice directories.

3.2.2 Directories and File organization

In order for R to interact with the files on your computer (i.e., for INPUT/OUTPUT),
R needs to know the path to your working directory. This is where R is ”parked” on your
computer, and will look here for external files, or will write output files to here.

Mac the default working directory (on your computer) is your User directory. For exam-
ple: ”/Users/marguerite”. Or where you opened your .R file (more on this later).

PC default is ”C:/Program Files/R/R-2.7.1” (your installed R version number).

Linux/UNIX or running R in a terminal default is where you started R.

Course Directory Organization

So let’s create a working directory. For the purposes of this course, at the top level of
your user directory, create a folder called Rclass. You will have to do this outside of
R. Either create the Rclass folder through the Finder or open a terminal, change to
your user directory if you’re not there via ”cd ” then ”mkdir Rclass.” Please make two
additional folders inside ”Rclass” called ”Data.”

3.2. RUNNING SIMPLE COMPARATIVE ANALYSES USING APE: OR A TOUR THROUGHRUSING PHYLOGENETIC EXAMPLES33

Figure 3.1: An example of directory organization to keep your R programming projects
organized. Here the Rcomparative folder is moved to its final location. When you are
actively working on a project, it may be more convenient to have it at the top level of
your user directory (here ”marguerite”).

Rclass the main project file for the course. It will contain all source code (scripts) and
direct output. If this folder gets too big, we can make subfolders.

Data to store our raw data input files (spreadsheets and text files). It should be within
Rclass.

Rdata if you really start to have a large number of files, or if you want to keep your
“raw”data pristine, set up a separate folder for writing processed R data files. After
setting this up, future analyses or scripts can access these files directly, rather than
working from the raw data files.

When you are done with the course, you can move it to an appropriate place in your file
heirarchy. As an example, this is the way I organize my personal computer (Fig. 3.1):
I like to have all of my Data and analyses in a folder called ”Data” at the top level of
my User directory. Within it, I save all of my R code and analyses in an folder called
”Rdirectory”. Inside that, I have separate folders for each project. This one is called
”Rclass”.

34 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

Moving through the directories

You can ”get” your current working directory from within R. You can also set your
working directory (after creating the directories first). This is the filepath from the root
directory of my computer:

> getwd()
> setwd("/Users/marguerite/Rclass")

And this is the filepath from my ”home” directory which is ”marguerite”:

> setwd("~/Rclass")

As you may have guessed, the ”filepath” is the path to your files. In the Unix file system,
the ”root” is signified by starting the filepath with ”/”. You can’t go up any more folders
from the ”root”. Anything to the right are names of the folders within the root, and
within that folder, etc. The first example above is called an absolute filepath. You can
also use relative filepaths, which navigate relative to where you are. In this case, start
with a name rather than ”̈. Some useful special characters are:

~ a special character for ”my user directory”

.. which means to go up one level

. which means the current directory (here)

/ separator between folders or levels. If you begin your filepath with / with nothing
preceeding it, this indicates an absolute file path starting from the root.

For example, if you wanted to back up to your user directory and change to a project
called ”MyFirstAnalysis”, you would have to go up one directory and then specify the
folder name, so filepath would be ”../MyFirstAnalysis”. To go up two directories and
then into a new directory, use ” ../../MyFirstAnalysis.”

Now try rerunning the code (you can get the lines you typed or cut and pasted by hitting
the up arrow, or by clicking on the history icon (the blue and yellow striped box), and
voila! You will see the pdf appear in your Rclass folder.

> setwd("~/Rclass")
> pdf(file="primatetree.pdf") # turn on pdf device for output
> plot(tree.primates) # plot the tree to the pdf file
> dev.off() # turn off pdf device to return output to the default
> save(tree.primates, file="tree.primates.rda") # save tree in Rdata format

3.2. RUNNING SIMPLE COMPARATIVE ANALYSES USING APE: OR A TOUR THROUGHRUSING PHYLOGENETIC EXAMPLES35

3.2.3 Running Independent Contrasts using ape

Now back to our example using ape. Let’s create two continuous characters. We also
assign ”names” to the entries so we know which species are associated with which data-
point.

> X <- c(4.09434, 3.61092, 2.37024, 2.02815, -1.46968)
> Y <- c(4.74493, 3.33220, 3.36730, 2.89037, 2.30259)
> X

[1] 4.09434 3.61092 2.37024 2.02815 -1.46968

> Y

[1] 4.74493 3.33220 3.36730 2.89037 2.30259

> names(X) <- names(Y) <- c("Homo", "Pongo", "Macaca", "Ateles", "Galago")
> X

Homo Pongo Macaca Ateles Galago
4.09434 3.61092 2.37024 2.02815 -1.46968

> Y

Homo Pongo Macaca Ateles Galago
4.74493 3.33220 3.36730 2.89037 2.30259

Compute phylogenetically independent contrasts using the ape function pic and save
them as new objects called ”pic.X” and ”pic.Y”. The names attribute we assigned to
the X and Y values above are very important here, as they will be used to match our
comparative data to the species on the tips of the tree. If we have no names, pic assumes
that they are in the same order as the tree (be careful!!).

We can now apply ordinary statistics to these PIC values. R has a huge number of
statistical functions, including tests of correlation and linear models (regression):

> pic.X <- pic(X, tree.primates)
> pic.Y <- pic(Y, tree.primates)
> pic.X

36 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

6 7 8 9
3.3583189 1.1929263 1.5847416 0.7459333

> pic.Y

6 7 8 9
0.8970604 0.8678969 0.7176125 2.1798897

> cor.test(pic.X, pic.Y)

Pearson's product-moment correlation

data: pic.X and pic.Y
t = -0.8562, df = 2, p-value = 0.4821
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.9874751 0.8823934

sample estimates:
cor

-0.5179156

> lm.YX <- lm(pic.Y ~ pic.X - 1) # this is a regression of Y "as a function" of X,
> # with -1 meaning no intercept (through origin)
> summary(lm.YX) # this shows us the p-values and summary statistics

Call:
lm(formula = pic.Y ~ pic.X - 1)

Residuals:
6 7 8 9

-0.55351 0.35263 0.03311 1.85770

Coefficients:
Estimate Std. Error t value Pr(>|t|)

pic.X 0.4319 0.2865 1.508 0.229

Residual standard error: 1.138 on 3 degrees of freedom
Multiple R-squared: 0.4311, Adjusted R-squared: 0.2414
F-statistic: 2.273 on 1 and 3 DF, p-value: 0.2288

Great! We ran our first comparative analysis. But what happened? Why did we get
what we did? Do we believe it? Let’s take a step back and first look at the raw data
(Fig. 3.2):

3.2. RUNNING SIMPLE COMPARATIVE ANALYSES USING APE: OR A TOUR THROUGHRUSING PHYLOGENETIC EXAMPLES37

> plot(X, Y) # same as plot(Y ~ X)

●

●●

●

●

−1 0 1 2 3 4

2.
5

3.
0

3.
5

4.
0

4.
5

X

Y

Figure 3.2: A plot of our raw data.

> plot(X, Y) # same as plot(Y ~ X)

> summary(lm(Y ~ X -1))

Call:
lm(formula = Y ~ X - 1)

Residuals:
Homo Pongo Macaca Ateles Galago

0.6285 -0.2982 0.9843 0.8513 3.7802

38 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

Coefficients:
Estimate Std. Error t value Pr(>|t|)

X 1.0054 0.3142 3.2 0.0329 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.029 on 4 degrees of freedom
Multiple R-squared: 0.719, Adjusted R-squared: 0.6488
F-statistic: 10.24 on 1 and 4 DF, p-value: 0.03291

So the regression of Y on X, not taking account of phylogeny is significant. Let’s look
at the phylogeny, the data, and the independent contrasts (Fig. 3.3). First open a new
quartz device so we can keep more than one plot at a time. And let’s add a title so we
know what it is.

> quartz()
> plot(pic.X, pic.Y)
> title("Independent Contrast Plot of Primate Data")

So we see that the variation in the data is perfectly aligned with phylogenetic distance.
When we take account of the expected covariance due to phylogeny, we get very di↵erent
PIC values from the raw data, and we lose the statistical association. So now we have a
better feeling for what is going on in this example.

3.2.4 The Brownian Motion Model of Evolution

The Brownian motion (hereafter BM) process was the first model of evolution applied
to comparative data ?. It is a very simple stochastic model for continuous data (data
which can take on any value fractional value, such as size, or mass or metabolic rate).
BM assumes that at any point in time, the trait has some probability of increasing
or decreasing in value (the probability is from a normal distribution, so there is equal
probability of going up or down).

Written as a stochastic di↵erential equation,

dX(t) = � dB(t). (3.1)

Eq. 3.1 expresses the amount of change in character X over the course of a small incre-
ment in time: specifically, dX(t) is the infinitesimal change in the character X over the
infinitesimal interval from time t to time t+ dt. The term dB(t) is “white noise”; that is,
the random variables dB(t) are independent and identically-distributed normal random

3.2. RUNNING SIMPLE COMPARATIVE ANALYSES USING APE: OR A TOUR THROUGHRUSING PHYLOGENETIC EXAMPLES39

●
●

●

●

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

pic.X

pi
c.
Y

Independent Contrast Plot of Primate Data

Figure 3.3: A plot of the independent contrasts on X, Y with phylogeny tree.primate.

40 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

variables, each with mean zero and variance proportional to �. The parameter � thus
measures the intensity of the random fluctuations in the evolutionary process.

Applied to a phylogeny, the species are expected to covary in proportion to the amount of
time they share in evolutionary history. That is, they have only been evolving indepen-
dently since they diverged from their most recent common ancestor. It is this covariance
that methods such as independent contrasts, phylogenetic GLS, and other methods which
assume BM seek to correct for.

3.2.5 Phylogenetic GLS

A closely related approach to independent contrasts is the phylogenetic Generalized Least
Squares technique. If we view the phylogenetic data as data containing ”correlated errors”.
In statistical terms, this means that there are correlations among the observations, in this
case as a result of shared phylogenetic history. We can transform this data (getting rid
of the ”correlated errors” by the phylogenetic GLS transformation:

Z = G�1/2Y

U = G�1/2X
(3.2)

Where X, Y are the original data, G is the correlation matrix resulting from phylogenetic
relationship, and Z and U are the transformed data. Using BM, the G matrix is simply
the amount of time from the root of the phylogeny to the mrca of the pair of taxa (tbm):

G = tbm (3.3)

It is important to note that in this case, if you are doing a regression, you must include
the intercept term in the phylogenetic transformation. That is because we did not mean-
center the data to begin with.

Recall that a regression is of the form:

y = mx+ b (3.4)

Where y is the dependent variable, x is the independent variable, with parameters for
slope m and intercept b. A regression procedure takes the data (x and y), and finds the
best filling values for m and b. Thus, we are estimating these parameters.

y = m ⇤ x+ b ⇤ 1 (3.5)

When we apply ”phylogenetic corrections” on y and x, we have to remember that we
must also apply it to the 1 next to the intercept term, b. It is maybe more clear if we

3.2. RUNNING SIMPLE COMPARATIVE ANALYSES USING APE: OR A TOUR THROUGHRUSING PHYLOGENETIC EXAMPLES41

think about it as x being the coe�cient of m, then the 1 is the coe�cient of the intercept
b.

In any case, when we apply phylogenetic correction, we must apply it to entire relation-
ship, which includes both the slope and intercept.

Later, when we take a linear model of the data, we will exclude the intercept term
because we’ve essentially bundled the intercept with the X to compute the phylogenetic
correction, so we shouldn’t double the intercept (more on this later).

In order to calculate this using ape codes, we first compute the correlation matrix as-
suming Brownian motion:

> tree <- tree.primates
> bm.prim <- corBrownian(phy=tree)

We then take this and use a standard statistical technique called generalized least squares
(available in package nlme), in which you can specify a matrix of correlated errors (in
other words, it doesn’t assume that correlations among observations are zero):

> require(nlme)
> XY <- data.frame(Y, X)
> summary(gls(Y ~ X, correlation=corBrownian(phy=tree), data=XY))

Generalized least squares fit by REML
Model: Y ~ X
Data: XY

AIC BIC logLik
17.48072 14.77656 -5.74036

Correlation Structure: corBrownian
Formula: ~1
Parameter estimate(s):

numeric(0)

Coefficients:
Value Std.Error t-value p-value

(Intercept) 2.5000672 0.7754516 3.224014 0.0484
X 0.4319328 0.2864904 1.507669 0.2288

Correlation:
(Intr)

X -0.437

42 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

Standardized residuals:
Homo Pongo Macaca Ateles Galago

0.4187373 -0.6395037 -0.1376075 -0.4269456 0.3844060
attr(,"std")
[1] 1.137666 1.137666 1.137666 1.137666 1.137666
attr(,"label")
[1] "Standardized residuals"

Residual standard error: 1.137666
Degrees of freedom: 5 total; 3 residual

We can see that the p-values (and parameter estimates) are the same using either phy-
logenetic GLS or independent contrasts.

Note that we could also have written the model as Y ~ X without specifying the
dataframe in the gls() call, but we would get a warning that the rownames of the
dataframe don’t match the tree. This is because this code was written to expect a data
frame and not a vector (vectors don’t have ”rownames” or ”columnames” because they
have only one dimension. Instead, they only have ”names” for each vector element.)

Other correlation structures can be specified (see help documentation for explanation of
the parameters). corGrafen is a scaled Brownian motion, whereas corMartins specifies
an OU model with a global optimum:

> corGrafen(value, tree, fixed=FALSE)
> corMartins(value, tree, fixed=FALSE)

3.2.6 Ancestral Reconstruction Methods

ape also has a function for reconstructing ancestral states called ace. Currently, there are
two main models that ace uses to do the reconstruction, ”ML” for Maximum Likelihood,
and ”pic” for Phylogenetically Independent Contrasts. Note that both use a Brownian
motion model, but the statistical method to fit di↵ers. ”pic” is using a least-squares
fitting method, whereas ”ML” is using likelihood.

Using our primate data from above, try:

> ancstatesML <- ace(X, tree, type="continuous")
> ancstatesPIC <- ace(X, tree, type="continuous", method="pic")
> ancstatesML

Ancestral Character Reconstruction

3.2. RUNNING SIMPLE COMPARATIVE ANALYSES USING APE: OR A TOUR THROUGHRUSING PHYLOGENETIC EXAMPLES43

Call: ace(x = X, phy = tree, type = "continuous")

Log-likelihood: -6.714469

$ace
6 7 8 9

1.183725 2.192018 2.571320 3.503182

$sigma2
[1] 1.9711502 0.6970463

$CI95
[,1] [,2]

[1,] -0.5058591 2.873308
[2,] 0.9868737 3.397163
[3,] 1.4844055 3.658235
[4,] 2.6858445 4.320519

> ancstatesPIC

Ancestral Character Reconstruction

Call: ace(x = X, phy = tree, type = "continuous", method = "pic")

Log-likelihood:

$ace
6 7 8 9

1.183725 2.780824 3.200378 3.852630

$CI95
[,1] [,2]

[1,] -1.296931 3.664381
[2,] 0.854866 4.706781
[3,] 1.367000 5.033757
[4,] 2.582428 5.122832

For continouous data, ace returns a list with elements:

ace the estimates of the ancestral character values.

CI95 the estimated 95% confidence intervals.

44 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

sigma2 if model = ”BM”, and method = ”ML”, the maximum likelihood estimate of the
Brownian parameter.

loglik if method = ”ML”, the maximum log-likelihood.

call the function call.

NOTE: In general, the 95% CI for ancestral states is very large, and increase as you go
further back in time. There is simply less information way back near the root to draw
any strong statistical conclusions.

Let’s try to visualize the ancestral states on the tree. We will use two handy functions
from ape: tiplabels() and nodelabels().

> plot(tree, type="cladogram", label.offset=.05)
> tiplabels(pch=21, cex= X, bg="yellow")
> nodelabels(pch=21, cex= ancstatesML$ace, bg="yellow")

Homo

Pongo

Macaca

Ateles

Galago

●

●

●●

●

●

●

3.2. RUNNING SIMPLE COMPARATIVE ANALYSES USING APE: OR A TOUR THROUGHRUSING PHYLOGENETIC EXAMPLES45

The ”label.o↵set” parameters simply plots the species names a little bit away from the
phylogeny. For other plots or plotting styles, you’ll just have to play with this a little to
get it right. tiplabels and nodelabels are plotting graphical symbols on the phylogeny,
pch=21 designates a two-tone plotting symbol and we set the background or internal
color to yellow using bg=”yellow”. You can also set the outside color of this point by
setting col=”red”. The information is in the size of the symbol, which is set by the cex
parameter. Luckily, our character values were in a nice range for plotting (roughly 1 to
5), if the numeric values were not so, you would simply scale them by multiplying by
a constant (e.g., for doubling the size, cex=X*2 and cex=ancstatesML$ace*2). If you
think having the branch length info is ugly, you can turn this o↵ by using:

> plot(tree, type="cladogram", use.edge.length=FALSE, label.offset=.05)

Let’s save the tree and data in an Rdata file in the ”Rdata” folder:

> save(tree.primates, X, Y, file="Rdata/tree.primates.rda")

End by saving your history.

HINT: Make a new folder for each R project/analysis, and keep them tidy

46 CHAPTER 3. SIMPLE COMPARATIVE ANALYSES IN R

Chapter 4

Finding Help

R has great built-in help facilities. Once you get used to R’s syntax (the form of R
functions and data), you will find them incredibly useful.

Every object that comes with the R program is documented in some way – this means
every function, internal dataset, as well as methods and classes (which we won’t have
time to cover).

4.1 When you know the name of the function

Say you want to find the mean of your data, so you guess that there is a function called
mean(). Finding help is easy:

> ?mean

Will bring up the help page, and is equivalent to:

> help(mean)

Notice that as you type help(you start to see the function definition on the bottom of
the console window. It shows you how to call the function (what variables it expects).

Looking at the help page, notice that there are sections (these are common to most help
pages):

Description what it does

Usage the format for calling the function (making it run)

47

48 CHAPTER 4. FINDING HELP

Arguments explanation for each of the arguments, their type, and what they represent

Details more explanation

Value what is returned from calling the function

Author

References

See Also other functions to check out

Examples Often the most valuable section, with examples that actually work. You can
test them out by cutting and pasting into the R console.

There are also hyperlinks in many help documents, to related help pages, so you can
“surf” you way through help.

4.2 Don’t know the name of the function

But first to access the help for a specific function, you need to know what it is called.

Two good options are:

> help.start()

Which will bring up an an html browser, which you can browse. Click on “Packages”,
then “base” if you are looking for a basic function that should be in the base distribution
of R. Click on the package name if you are looking for a function in a package. Browsing
through the help is very useful for beginners.

> help.search("plot")

Will do a “fuzzy” search (i.e., will also match words close in spelling – not exact – to
plot). Of course, replace ”plot”with whatever you are looking for. This function searches
through the full text of the help docs, so for a common word like plot, this will return a
huge list, which you can look through package by package.

4.3. PACKAGE-SPECIFIC HELP 49

4.3 Package-specific help

Packages are generally a set of functions that are loaded from some (hidden) directory
on your computer into active memory, so that you can use them by name. Now that you
know the names of the functions, you can access specific help pages directly. Try the help
page for independent contrasts:

> help(pic)

Here’s a harder example. you might want to know more about the phylogeny plotting
function in ape. If tree is a tree object in ape, you can use plot(tree) to call the
function, so you might think that you can find the help page by using help(plot) or
?plot. However, this brings up the generic plot function which doesn’t say anything
about the one you want (the tree plotting function in ape.

What is going on is that ape has a method set for plotting objects of the class phylo,
so that you don’t have to remember the specific function name. This is actually a
wonderful feature of object-oriented programming, otherwise you would have to remember
thousands of functions, all uniquely named.

So how do we find the one we want? You could try:

> help(plot, package="ape")

But you will see that this doesn’t return anything. This means that the actual plotting
function in ape is named something else, so that there is no function in ape named ”plot”
(R requires all named functions in packages to be documented).

Huh? How does plot() plot a phylogenetic tree when there is no function called plot in
ape? This is an example of a generic function. The function plot is actually a generic,
with di↵erent specific functions for di↵erent types of objects – R automatically chooses
the correct one by looking at the objects class.

Anyway...

You have a couple more options (in addition to the general options above):

help(package=“ape”) will return the package’s main help page, where you can see
a list of functions, but they are not clickable. Once you locate the name of the
function you can follow up with a help(plot.phylo).

methods(plot) will return all of the methods written for the generic plot call. Looking
through it, you might guess that plot.phylo is the one you want. NOTE: this
only works for S3 methods.

50 CHAPTER 4. FINDING HELP

Chapter 5

Creating Data Objects and Plotting

5.1 Data objects

Now that you have been introduced to R’s data objects, we’ll practice creating them. R
has a rich collection of functions which are very helpful for creating and manipulating
objects, so a bit of code can substitute for whole lot of typing!

The tables below list some helpful functions. Look up help for anything you don’t know.
It will soon start making sense!

commands actions
c(n1, n2, n3) combines elements into an object
cbind(x, y) binds objects together by column
rbind(x, y) binds objects together by row

Table 5.1: Common combine functions used for creating data objects from existing objects

commands actions
seq() generate a sequence of numbers
1:10 sequence from 1 to 10 by 1
rep(x, times) replicates x
sample(x, size, replace=FALSE) sample size elements from x
rnorm(n, mean=0, sd=1) draw n samples from normal distribution

Table 5.2: Functions used for creating sequences and sampling

Factors are categorical data, for example, “large” and “small”, or “blue”, “red”’, and “yel-
low”. Factors may be ordered, which means that the order of the categories has meaning
(like size categories). By default, factors are unordered. Levels are the values (i.e., names
of the categories) that the factor can take.

51

52 CHAPTER 5. CREATING DATA OBJECTS AND PLOTTING

commands actions
vector() create a vector
matrix() create a matrix
data.frame() create a data.frame
as.vector(x) coerces x to vector
as.matrix(x) coerces to matrix
as.data.frame(x) coerces to data frame
as.character(x) coerces to character
as.numeric(x) coerces to numeric
factor(x) creates factor levels for elements of x
levels() orders the factor levels as specified

Table 5.3: Functions used for creating and coercing objects to new type/class

Examples

To get you started, here are some examples. Creating vectors:

> x <- c(1, 5, 7, 14)
> x

[1] 1 5 7 14

> x <- rep(x, times=2)
> x

[1] 1 5 7 14 1 5 7 14

> y <- rnorm(8)
> y

[1] -0.0599902 0.5525935 -1.1080165 -1.0950411 0.6993651 0.7515395 -0.8649139
[8] -2.2238107

> species <- letters[1:4] # special stored data object: lower case letters a - d
> species

[1] "a" "b" "c" "d"

> LETTERS[1:3] # A B C

5.1. DATA OBJECTS 53

[1] "A" "B" "C"

> treatment <- c("high", "med", "low")
> treat <- factor(treatment) # create a factor
> treat

[1] high med low
Levels: high low med

> as.numeric(treat) # coerce to numeric

[1] 1 3 2

> x <- factor(x) # factor

Notice that your work is only saved if you STORE the result in an obect

Creating a matrix:

> xy <- cbind(x,y) # column bind
> xy

x y
[1,] 1 -0.0599902
[2,] 2 0.5525935
[3,] 3 -1.1080165
[4,] 4 -1.0950411
[5,] 1 0.6993651
[6,] 2 0.7515395
[7,] 3 -0.8649139
[8,] 4 -2.2238107

> z <- matrix(1:25, nrow=5) #create a matrix with 5 rows
> z

[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25

Creating a data matrix:

> dat <- data.frame(species, x, y)

54 CHAPTER 5. CREATING DATA OBJECTS AND PLOTTING

5.2 Simple plotting

The generic function for plotting in R is plot.

5.2.1 Bivariate plot

When you supply two vectors to plot, is assumes that the first one is the X coordinate, and
the second is the Y. If the first object is a continuous variable, you will get a scatterplot.

> plot(y,x) # continuous variable first - plots as a scatterplot

●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

y

x

However, if the first
object is a factor, you will get a boxplot.

> plot(x, y) # categorical variable first - plots as a boxplot

5.2. SIMPLE PLOTTING 55

1 5 7 14

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Plot has a huge number of options for changing the symbols (see ?points, color, size
of symbols, axes. labels, adding regression lines or straight lines, etc. Creating multiple
panels on a page, etc. Help pages you may want to visit include ?lines, ?abline, ?par,
?axis.

5.2.2 Univariate plot

To plot a histogram, use:

> hist(y)

56 CHAPTER 5. CREATING DATA OBJECTS AND PLOTTING

Histogram of y

y

Fr
eq
ue
nc
y

−3 −2 −1 0 1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

To plot a bar plot, use:

> barplot(y)

5.2. SIMPLE PLOTTING 57

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Practice

1. Create a dataset with simulated data using rnorm().

(a) Simulate 21 random data points drawn from a normal distribution (create a
numeric vector), and save it in the variable “y”. Create a second set of 21
points and save it as “y1”.

> y <- rnorm(21)
> y1 <- rnorm(21)
> y

[1] -0.168984468 1.744057572 -0.973792381 2.181253325 -0.271815623
[6] -1.519178459 0.464675948 0.441336004 -1.269421076 -0.473276722

[11] 0.487935722 -0.291422130 -0.165038976 1.998638212 0.305123817
[16] 0.003532067 -0.967991230 -0.355547127 0.331657651 0.162875050
[21] -1.555495898

58 CHAPTER 5. CREATING DATA OBJECTS AND PLOTTING

> y1

[1] 0.41339352 0.82268376 2.30615544 0.63824071 0.80825783 1.07801740
[7] -0.15137476 -1.05348975 -0.21766137 2.60354690 -1.02202193 -0.08451111

[13] -0.76071467 -1.37201083 -0.86821755 -0.27252772 0.38823803 1.06362074
[19] -0.09175088 1.78317876 0.67630249

(b) Create a treatment vector with levels “low”, “med”, and “high”, save it as a
factor.

> treatment <- factor(c("low", "med", "high"))
> treatment

[1] low med high
Levels: high low med

(c) Our treatment has numeric values also, so create a numeric vector with the
values 2, 4, 8, save it as x.

(d) Create a species vector with seven names.

(e) Create a matrix with y in the first column and x in the second column, save
it as dat.matrix.

(f) Create a data frame with species, x, treatment, y and y1, save as dat. Why
can’t you make a matrix with these columns?

(g) Make a bivariate plot of the numeric value of the treatment (x) versus the
response (y). You may want to check the help documentation for ”plot”. You
will have to select the columns of the data frame.

(h) Make a plot on the treatment as factor versus the response. What is the
di↵erence between these two plots?

(i) Is the factor displayed in the plot in the order that makes sense? If not, fix
this by applying factor to the treatment column of dat again, but this time
specifying the levels vector with names of the levels in the order you want.
You may want to look at the help page for factor. Plot it again.

(j) Let’s make a scatterplot (plot(y, y1)) to see if there is any structuring in the
data (eventually with respect to the treatment levels – the rest of this exercise
is in the chapter on Workhorse Functions of Data Analysis). While we’re at
it, let’s make it prettier. Change the symbols to solid circles by adding the
optional parameter pch=16, and the points bigger by cex=2. Change the color
to red using col="red".

(k) Now let’s make some data which should di↵er. For the ”low” treatment, sim-
ulate y and y1 as normally distributed data with mean = -2 and sd=.5, and
”high” as mean=5, and sd=3. Remake the dataframe.

(l) Now make two boxplots: treatment vs. y and treatment vs. y1.

(m) Make boxplots of species vs. y and species vs. y1. Why would you make this
plot?

Chapter 6

Saving your work as R scripts

Chapter Topics:

• Building good scripts

• Running source code

• Debugging scripts

• Clearing your workspace

Skills: writing clean source code, verifying, using print and cat, using history files.

Because R is interactive, it is tempting to simply play with code until you get the results
you want. The problem with this is that you may not be able to reproduce it. Also,
you may have made many manipulations of your data, some of which you’ve lost track
of, and so your data objects may not really be what you think they are. This makes it
impossible to double-check your analysis.

A key part of any analysis is verification:

1. Did you do what you really think you did?

2. Was the input free of error?

3. Did the steps of your analysis work without error?

4. And perhaps most importantly – can you reproduce it?

To be able to accomplish these goals, you want to create clean scripts. Scripts are lines
of code saved in an ordinary text file with a .R or .r ending. (Make sure it is plain text,
and NOT a .rtf, or a .doc, etc file).

All good script follows the first three R’s, as you increase along the path of R jedi-hood,
you will add on the 4th R:

59

60 CHAPTER 6. SAVING YOUR WORK AS R SCRIPTS

1. Readable – If you look at the script in a month or 6 months, will you be able to
easily understand it?

2. Right – Does it run free of error, and does it produce correct results?

3. Repeatable – Can you reproduce your results from your input data?

4. Reusable – Is your coding modular and designed well so that your code can interact
with other scripts, and/or use it for other purposes?

The mac interface has a very nice text editor. From the R menu, choose File > New
Document (or command-N). Simply type or cut and paste your code from your history
file into here. Let’s make a script for the analyses we’ve done thus far.

6.1 Script template

First, make sure that you are in the directory that you want the script to execute from
(Rclass). Start o↵ with any packages that you wish to load, then begin to cut and paste
your code. Make sure to add comments indicated by the # symbol so that you know what
the code does:

Here is the basic structure of a script:

> require(...addonpackage...) # anything between ... needs to be changed
> # if none, then you don't need that line
>
> dat <- read.csv(..."your input file.csv"...) # input data
>
> # Your lines of code to run analyses
> # You may have output or processed data that you want to save,
> # create an object for it and write it out to a csv file at the end
>
> # plot graphics
>
> write.csv(out, file="myoutput.csv") # output data

And here is a simple example script that reads in data, calculates summary statistics, a
linear regression, and a couple of figures.

> #require(stats) # stats is part of the base package and doesn't need to be loaded,
> # but if you need an add-on package, you would require it here.
>
> dat <- read.csv ("Data/morphpre.csv") # read in data

6.1. SCRIPT TEMPLATE 61

> lm.HLSVL <- lm(dat$HandL ~ dat$SVL) # run a linear model
> summary(lm.HLSVL) # get summary statistics
> str(lm.HLSVL) # look at the linear model object
> coef(lm.HLSVL)[2] # get the slope of the regression
> plot(dat$HandL ~ dat$SVL, cex=2) # make a plot with big dots (cex controls size of symbols)
> abline(lm.HLSVL, col="red") # plots the regression line, in red
> title("Microhylid Hand Length vs Body Size") # add a title
> text(x=15, y=13, paste("slope = ", coef(lm.HLSVL)[2]))
> # add important info to the text
+
+ ###
+ # please insert your other lines of code here -- enough
+ # to save a meaningful analysis
+ ###

Note that I have used spacing and indents to increase the “readability” of the code. Use
it to set of blocks of code that accomplish one task, with indents to indicate heirarchy.
We will talk more about this in the functions section.

Save the script file as ”testScript.R” or an appropriate title in your Rclass folder. Now
if you want to run the code, you simply type at the R console (from within your Rclass
directory):

> source("testScript.R")

When I am trying to develop a script, I often work by having the script window open
next to the R console, and once a bit of code is working, I cut and paste it directly into
the script. Save the script and source it. Once you have a good amount of code, you can
work by making changes to the script, saving, and sourcing, over and over again.

6.1.1 Writing pdf to file

If you’d like to print your pdf to a file instead of to the screen, you can add the following
code into your script:

> pdf(file="MicrohylidHandLvsSize.pdf") # open pdf device for printing
> plot(dat$HandL ~ dat$SVL, cex=2) # remake plot as before
> abline(lm.HLSVL, col="red")
> title("Microhylid Hand Length vs Body Size")
> text(x=15, y=13, paste("slope = ", coef(lm.HLSVL)[2]))
> dev.off() # turn off pdf device so future plots go back to screen

62 CHAPTER 6. SAVING YOUR WORK AS R SCRIPTS

6.1.2 History file

Another handy feature of R is that it automatically saves a history file. That is, a file
that has a list of every command you’ve executed in your sessions. It is saved by default
as .history in your working directory. Because the file name begins with a period, it
is not visible normally (although it is there – you can see it from the terminal by using
the ls -a command). To save it explicitly with your own filename, either click on the
history button on the R gui (box with yellow and blue lines), and click on ”save history”
at the bottom of the side window, or type the code:

> savehistory(file = "date_today.Rhistory")

This is an ordinary text file, which you can open up and edit (removing all the mistakes),
and save as a scriptname.R file.

Another helpful tip when writing source code is to use print and cat functions to print
out your output to the console. When you are using R in interactive mode, when you
type the name of a variable, you get a print of its contents. However, when you source
the same code, the variable does not print to the screen. You have to explicitly put a
print or cat function around it.

Let’s use a built-in dataset called iris, which is the famous Fisher iris dataset. Make a
test script file and save it as test.R:

> names(iris) # will not print to console when sourced
> spp <- unique(iris$Species) # only unique values
> spp <- as.character(spp) # factor -> character
> spp # will not print to console when sourced
> print('Species names') # will print
> print(spp) # will print
> cat('\n', 'Species names =', spp) # concatenate
> # \n is a carriage return character
> summary(iris)

Then test it by running:

> source("test.R")

[1] "Species names"
[1] "setosa" "versicolor" "virginica"

Species names = setosa versicolor virginica

6.2. REMEMBER THE WORKSPACE 63

You can see that print just makes a rough dump of the variables onto the screen. I added
a character string so that we would know what variable was being printed to screen. cat
makes a nicer, more customized display (it turns everything into a character vector, then
pastes them together [i.e., concatenates them] before printing). They both do the same
basic job, however. Notice also that summary does print to screen. Usually you only need
to use these explicit print statements to see the contents of your variables as you are
debugging.

6.2 Remember the workspace

Finally, remember that R is interactive, and the objects you create during a session are
still around even after you’ve run your source code and forgotten about them. So to really
check that your script is complete, you should shut down R (don’t save the workspace),
double click on the name of your script to restart R in the correct directory, and then
source the program again. Does it work? Great!!

You could also try clearing all the objects from your workspace using the command:

> rm(list=ls()) # remove a list of objects consisting of the entire workspace

But this doesn’t unload your packages, and there is still a danger that the script won’t
run in a fresh session. It’s OK for minor incremental changes, but the best thing for a
real test is to quit R and retry with a blank slate.

In general, most of my analyses are pretty quick in terms of computer time (not pro-
gramming time!). So I never save my workspace, because I don’t want to deal with any
“ghost” objects I have forgotten about. Instead, I write a nice script that will generate
the whole analysis. If it’s a really big complex analysis, you can save intermediate output
as r data files (more on this later).

Try to create a script file for all the analyses we’ve done so far (and for every session
throughout the course).

6.3 Exercises

1. Create a script of the work we’ve done so far.

2. R has great diagnostic plots for linear models. Read about them in the help page
for ?plot.lm and incorporate a multi-panel figure by adding two lines of code to the
script you’ve already made:

64 CHAPTER 6. SAVING YOUR WORK AS R SCRIPTS

> par(mfrow = c(2,2)) # set the plot environment to have two rows and two columns
> plot(lm.HLSVL)

3. Save output to a file.

4. Modify ’test.R’ so that a summary of the iris data prints to the console when
sourced.

5. Explore other datasets in R. At the R command prompt type data() to see what
is available.

Chapter 7

The Workhorse Functions of Data
Manipulation

Chapter Topics/Skills:

Indexing/Subsetting accessing particular elements of your data object

String Matching using grep, sub

Sorting ordering data

Matching using logical comparisons to index

Merging matching two data frames or matrices by a common column and merging into
a new object

Reshaping R Objects changing the shape of matrices and dataframes, long-thin to
short-fat formats

Attributes, Classes the characteristics of data objects and how to manipulate them

As a biologist, these data manipulation topics may seem dry, but they are really pow-
erful and will allow you do to much more sophisticated analyses, and to do them with
confidence. So it is well worth taking some time to learn how to use them well.

7.1 Indexing and subsetting

In general, accessing elements of vectors, matrices, or dataframes is achieved through
indexing by:

inclusion a vector of positive integers indicating which elements of the vector to include

65

66 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

exclusion a vector of negative integers

logical values a vector of TRUE / FALSE values indicating which elements to include
/ exclude

by name a character vector of names of columns (only) or columns and rows

blank index take the entire column, row, or object

7.1.1 Vectors

The “index” of a vector is it’s number in the order. Each and every element in any data
object has at least one index (if vector, it’s position along the vector, if a matrix or data
frame, it’s row and column number, etc.)

Let’s create a vector:

> xx <- c(1, 5, 2, 3, 5)
> xx

[1] 1 5 2 3 5

Access specific values of xx by number:

> xx[1]

[1] 1

> xx[3]

[1] 2

You can use a function to generate an index. Get the last element (without knowing how
many there are) by:

> xx[length(xx)]

[1] 5

Retrieve multiple elements of xx by using a vector as an argument:

7.1. INDEXING AND SUBSETTING 67

> xx[c(1, 3, 4)]

[1] 1 2 3

> xx[1:3]

[1] 1 5 2

> xx[c(1, length(xx))] # first and last

[1] 1 5

Exclude elements by using a negative index:

> xx

[1] 1 5 2 3 5

> xx[-1] # exclude first

[1] 5 2 3 5

> xx[-2] # exclude second

[1] 1 2 3 5

> xx[-(1:3)] # exclude first through third

[1] 3 5

> xx[-c(2, 4)] # exclude second and fourth, etc.

[1] 1 2 5

Use a logical vector:

> xx[c(T, F, T, F, T)] # T is the same as TRUE

68 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

[1] 1 2 5

> xx > 2

[1] FALSE TRUE FALSE TRUE TRUE

> xx[xx > 2]

[1] 5 3 5

> xx > 2 & xx < 5

[1] FALSE FALSE FALSE TRUE FALSE

> xx[xx>2 & xx<5]

[1] 3

Subsetting (picking particular observations out of an R object) is something that you
will have to do all the time. It’s worth the time to understand it clearly.

7.1.2 Matrices and Dataframes

Matrices and dataframes are both rectangular having two dimensions, and handled very
similarly For indexing and subsetting. Let’s work with a dataframe that is provided
with the geiger package called geospiza. It is a list with a tree and a dataframe. The
dataframe contains five morphological measurements for 13 species. First, let’s clear the
workspace (or clear and start a new R session):

If you have the package geiger installed, get the built-in dataset this way:

> rm(list=ls())
> require(geiger)
> data(geospiza) # load the dataset into the workspace
> ls() # list the objects in the workspace

[1] "geospiza"

Let’s find out some basic information about this object:

7.1. INDEXING AND SUBSETTING 69

> class(geospiza)

[1] "list"

> attributes(geospiza)

$names
[1] "geospiza.tree" "geospiza.data"

It is a list with two elements. Here we want the data

> geo <- geospiza$geospiza.data
> dim(geo)

[1] 13 5

You can also read it in as a .csv input file in the Data directory and proceed.

> geo <- read.csv("Data/geospiza_raw.csv")
> dim(geo)

It is a dataframe with 13 rows and 5 columns. If we want to know all the attributes of
geo:

> attributes(geo)

$names
[1] "wingL" "tarsusL" "culmenL" "beakD" "gonysW"

$row.names
[1] "magnirostris" "conirostris" "difficilis" "scandens" "fortis"
[6] "fuliginosa" "pallida" "fusca" "parvulus" "pauper"

[11] "Pinaroloxias" "Platyspiza" "psittacula"

$class
[1] "data.frame"

We see that it has a ”names” attribute, which refers to column names in a dataframe.
Typically, the columns of a dataframe are the variables in the dataset. It also has
”rownames” which contains the species names (so it does not have a separate column for
species names).

Dataframes have two dimensions which we can use to index with: dataframe[row, col-
umn].

70 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

> geo # the entire object, same as geo[] or geo[,]
> geo[c(1, 3),] # select the first and third rows, all columns
> geo[, 3:5] # all rows, third through fifth columns
> geo[1, 5] # first row, fifth column (a single number)
> geo[1:2, c(3, 1)] # first and second row, third and first column (2x2 matrix)
> geo[-c(1:3, 10:13),] # everything but the first three and last three rows
> geo[1:3, 5:1] # first three species, but variables in reverse order

To prove to ourselves that we can access matrices in the same way, let’s coerce geo to be
a matrix:

> geom <- as.matrix(geo)
> class(geom)

[1] "matrix"

> class(geo)

[1] "data.frame"

> geo[1,5] # try a few more from the choices above to test

[1] 2.675983

Since geo and geom have row and column names, we can access by name (show that this
works for geom too):

> geo["pauper", "wingL"] # row pauper, column wingL

[1] 4.2325

> geo["pauper",] # row pauper, all columns

wingL tarsusL culmenL beakD gonysW
pauper 4.2325 3.0359 2.187 2.0734 1.9621

We can also use the names (or rownames) attribute if we are lazy. Suppose we wanted
all the species which began with ”pa”. we could find which position they hold in the
dataframe by looking at the rownames, saving them to a vector, and then indexing by
them:

7.1. INDEXING AND SUBSETTING 71

> sp <- rownames(geo)
> sp # a vector of the species names

[1] "magnirostris" "conirostris" "difficilis" "scandens" "fortis"
[6] "fuliginosa" "pallida" "fusca" "parvulus" "pauper"

[11] "Pinaroloxias" "Platyspiza" "psittacula"

> sp[c(7,8,10)] # the ones we want are #7,8, and 10

[1] "pallida" "fusca" "pauper"

> geo[sp[c(7,8,10)],] # rows 7,8 and 10, same as geo[c(7, 8, 10)]

wingL tarsusL culmenL beakD gonysW
pallida 4.265425 3.089450 2.430250 2.016350 1.949125
fusca 3.975393 2.936536 2.051843 1.191264 1.401186
pauper 4.232500 3.035900 2.187000 2.073400 1.962100

One di↵erence between dataframes and matrices is that Indexing a data frame by a single
vector (meaning, no comma separating) selects an entire column. This can be done by
name or by number:

> geo[3] # third column
> geo["culmenL"] # same
> geo[c(3,5)] # third and fifth column
> geo[c("culmenL", "gonysW")] # same

Prove to yourself that selecting by a single index has a di↵erent behavior for matrices
(and sometimes produces an error. Why? Because internally, a dataframe is actually
a list of vectors. Thus a single name or number refers to the column, rather than a
coordinate in a cartesian-coordinate-liek system. However, a matrix is actually a vector
with breaks in it. So a single number refers to a position along the single vector. A
single name could work, but only if the individual elements of the matrix have names
(like naming the individual elements of a vector).

Another di↵erence is that dataframes (and lists below) can be accessed by the $ operator.
It means indicates a column within a dataframe, so dataframe$column. This is another
way to select by column:

> geo$culmenL

72 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

[1] 2.724667 2.654400 2.277183 2.621789 2.407025 2.094971 2.430250 2.051843
[9] 1.974420 2.187000 2.311100 2.331471 2.259640

An equivalent way to index is by using the subset function. Some people prefer it
because you have explicit parameters for what to select and which variables to include.
See help page ?subset.

7.1.3 Lists

A list is like a vector, except that whereas a vector has the same type of data (numeric,
character, factor) in each slot, a list can have di↵erent types in di↵erent slots. They are
sort of like expandable containers, flexibly accommodating any group of objects that the
user wants to keep together.

They are accessed by numeric index or by name (if they are named), but they are accessed
by double square brackets. Also, you can’t access multiple elements of lists by using
vectors of indices:

> mylist <- list(vec = 2*1:10, mat = matrix(1:10, nrow=2), cvec = c("frogs", "birds"))
> mylist

$vec
[1] 2 4 6 8 10 12 14 16 18 20

$mat
[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

$cvec
[1] "frogs" "birds"

> mylist[[2]]

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> mylist[["vec"]]

[1] 2 4 6 8 10 12 14 16 18 20

7.2. STRING MATCHING 73

> # mylist[[1:3]] # gives an error if you uncomment it
> mylist$cvec

[1] "frogs" "birds"

7.2 String Matching

A more useful feature is string matching. R has grep facilities, which can do partial
matching of character strings. For example, we could directly search for species (the
object or ”x”) names which contain ”p” (the pattern):

> sp <- rownames(geo)
> grep(pattern = "p", x = sp) # returns indices

[1] 7 9 10 12 13

> grep("p", sp, value=T) # returns the species names which match

[1] "pallida" "parvulus" "pauper" "Platyspiza" "psittacula"

> grep("p", sp, ignore.case=T, value=T) # case-sensitive by default

[1] "pallida" "parvulus" "pauper" "Pinaroloxias" "Platyspiza"
[6] "psittacula"

> grep("^P", sp, value=T) # only those which start with (^) capital P

[1] "Pinaroloxias" "Platyspiza"

It is possible to use perl-type regular expressions, and the sub function is also available.
Sub is related to grep, but substitutes a replacement value to the matched pattern. Notice
that there are two species which have upper case letters. We can fix this with:

> sp <- rownames(geo)
> sub(pattern = "^P", replacement = "p", sp)

[1] "magnirostris" "conirostris" "difficilis" "scandens" "fortis"
[6] "fuliginosa" "pallida" "fusca" "parvulus" "pauper"

[11] "pinaroloxias" "platyspiza" "psittacula"

> rownames(geo) <- sub(pattern = "^P", replacement = "p", sp) # to save changes

74 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

7.3 Ordering Data

Suppose we now want geo in alphabetical order. We can use the sort function to sort
the rownames vector, then use it to index the dataframe:

> sort(rownames(geo))
> geo[sort(rownames(geo)),]

A better option for dataframes, though, is order:

> order(rownames(geo)) # the order that the species should take to be

[1] 2 3 5 6 8 1 7 9 10 11 12 13 4

> # sorted from a-z
> rbind(rownames(geo), order(rownames(geo))) # to illustrate

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] "magnirostris" "conirostris" "difficilis" "scandens" "fortis" "fuliginosa"
[2,] "2" "3" "5" "6" "8" "1"

[,7] [,8] [,9] [,10] [,11] [,12]
[1,] "pallida" "fusca" "parvulus" "pauper" "pinaroloxias" "platyspiza"
[2,] "7" "9" "10" "11" "12" "13"

[,13]
[1,] "psittacula"
[2,] "4"

> oo <- order(rownames(geo))
> geo[oo,] # sorted in alpha order

wingL tarsusL culmenL beakD gonysW
conirostris 4.349867 2.984200 2.654400 2.513800 2.360167
difficilis 4.224067 2.898917 2.277183 2.011100 1.929983
fortis 4.244008 2.894717 2.407025 2.362658 2.221867
fuliginosa 4.132957 2.806514 2.094971 1.941157 1.845379
fusca 3.975393 2.936536 2.051843 1.191264 1.401186
magnirostris 4.404200 3.038950 2.724667 2.823767 2.675983
pallida 4.265425 3.089450 2.430250 2.016350 1.949125
parvulus 4.131600 2.973060 1.974420 1.873540 1.813340
pauper 4.232500 3.035900 2.187000 2.073400 1.962100
pinaroloxias 4.188600 2.980200 2.311100 1.547500 1.630100

7.4. MATCHING 75

platyspiza 4.419686 3.270543 2.331471 2.347471 2.282443
psittacula 4.235020 3.049120 2.259640 2.230040 2.073940
scandens 4.261222 2.929033 2.621789 2.144700 2.036944

Order can sort on multiple arguments, which means that you can use other columns to
break ties. Let’s trim the species names to the first letter using the substring function,
then sort using the first letter of the species name and breaking ties by tarsusL:

> sp <- substring(rownames(geo), first=1, last=1)
> oo <- order(sp , geo$tarsusL) # order by first letter species, then tarsusL
> geot <- geo[oo,]["tarsusL"] # ordered geo dataframe, take only the wingL column
> geo <- geo[oo,]

Note: using geo["tarsusL"] as a second index for order doesn’t work, because it is a one
column dataframe, as opposed to geo$tarsus which is a vector. It must match sp, which
is a vector. Check the dim and length of each. vectors have length only, dataframes
have dimension 2.

7.4 Matching

Matching is very easy in R, and is often used to create a logical vector to subset objects.
Greater than and less than are as usual, but logical equal is ”==” to di↵erentiate from
the assignment operator. Also >= and <=.

> geot > 3 # a logical index

tarsusL
conirostris FALSE
difficilis FALSE
fuliginosa FALSE
fortis FALSE
fusca FALSE
magnirostris TRUE
parvulus FALSE
pinaroloxias FALSE
pauper TRUE
psittacula TRUE
pallida TRUE
platyspiza TRUE
scandens FALSE

76 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

> geot == 3 # must match exactly 3, none do

tarsusL
conirostris FALSE
difficilis FALSE
fuliginosa FALSE
fortis FALSE
fusca FALSE
magnirostris FALSE
parvulus FALSE
pinaroloxias FALSE
pauper FALSE
psittacula FALSE
pallida FALSE
platyspiza FALSE
scandens FALSE

> geot[geot > 3] # use to get observations which have tarsus > 3

[1] 3.038950 3.035900 3.049120 3.089450 3.270543

> # ii <- geot > 3 # these two lines of code accomplish the same
> # geot[ii]
> cbind(geo["tarsusL"], geot > 3) # check

tarsusL tarsusL
conirostris 2.984200 FALSE
difficilis 2.898917 FALSE
fuliginosa 2.806514 FALSE
fortis 2.894717 FALSE
fusca 2.936536 FALSE
magnirostris 3.038950 TRUE
parvulus 2.973060 FALSE
pinaroloxias 2.980200 FALSE
pauper 3.035900 TRUE
psittacula 3.049120 TRUE
pallida 3.089450 TRUE
platyspiza 3.270543 TRUE
scandens 2.929033 FALSE

> geo[geot>3,]["tarsusL"] # what does this do?

7.4. MATCHING 77

tarsusL
magnirostris 3.038950
pauper 3.035900
psittacula 3.049120
pallida 3.089450
platyspiza 3.270543

Matching and subsetting works really well for replacing values. Suppose we thought that
every measurement that was less than 2.0 was actually a mistake. We can remove them
from the data:

> geo [geo<2] <- NA

Missing values compared to anything else will return a missing value (so NA == NA
returns NA, which is usually not what you want). You must test it with is.na function.
You can also test multiple conditions with and (&) and or (|)

> !is.na(geo$gonysW)

[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[13] TRUE

> geo[!is.na(geo$gonysW) & geo$wingL > 4,] # element by element "and"

wingL tarsusL culmenL beakD gonysW
conirostris 4.349867 2.984200 2.654400 2.513800 2.360167
fortis 4.244008 2.894717 2.407025 2.362658 2.221867
magnirostris 4.404200 3.038950 2.724667 2.823767 2.675983
psittacula 4.235020 3.049120 2.259640 2.230040 2.073940
platyspiza 4.419686 3.270543 2.331471 2.347471 2.282443
scandens 4.261222 2.929033 2.621789 2.144700 2.036944

> geo[!is.na(geo$gonysW) | geo$wingL > 4,] # element by element "or"

wingL tarsusL culmenL beakD gonysW
conirostris 4.349867 2.984200 2.654400 2.513800 2.360167
difficilis 4.224067 2.898917 2.277183 2.011100 NA
fuliginosa 4.132957 2.806514 2.094971 NA NA
fortis 4.244008 2.894717 2.407025 2.362658 2.221867
magnirostris 4.404200 3.038950 2.724667 2.823767 2.675983
parvulus 4.131600 2.973060 NA NA NA

78 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

pinaroloxias 4.188600 2.980200 2.311100 NA NA
pauper 4.232500 3.035900 2.187000 2.073400 NA
psittacula 4.235020 3.049120 2.259640 2.230040 2.073940
pallida 4.265425 3.089450 2.430250 2.016350 NA
platyspiza 4.419686 3.270543 2.331471 2.347471 2.282443
scandens 4.261222 2.929033 2.621789 2.144700 2.036944

> !is.na(geo$gonysW) && geo$wingL > 4 # vectorwise "and"

[1] TRUE

Matching works on strings also:

> geo[rownames(geo) == "pauper",] # same as geo["pauper",]
> geo[rownames(geo) < "pauper",]

There are even better functions for strings, though. In the expression A %in% B, the %in%
operator compares two vectors of strings, and tells us which elements of A are present in
B.

> newsp <- c("clarkii", "pauper", "garmani")
> newsp[newsp %in% rownames(geo)] # which new species are in geo?

We can define the ”without” operator:

> "%w/o%" <- function(x, y) x[!x %in% y]
> newsp %w/o% rownames(geo) # which new species are not in geo?

7.5 Merging

Merging is another powerful database function. The concept is simple. Given two objects
with a common matching key, can we merge them together into one object? Usually, the
matching key in comparative data is the species name.

A common task is to match a morphology dataset with an ecology dataset, or a tree file
with a data file. Continuing our example, let’s make an ecology field and add it to geot:

> geot$ecology <- LETTERS[1:nrow(geot)] # A:M

Now, let’s merge geo[”tarsusL”] with the first five rows of geot:

7.5. MERGING 79

> # only maches to both datasets are included
> merge(x=geo["tarsusL"], y=geot[1:5,], by= "row.names")

Row.names tarsusL.x tarsusL.y ecology
1 conirostris 2.984200 2.984200 A
2 difficilis 2.898917 2.898917 B
3 fortis 2.894717 2.894717 D
4 fuliginosa 2.806514 2.806514 C
5 fusca 2.936536 2.936536 E

> # all species in both datasets are included
> merge(x=geo["tarsusL"], y=geot[1:5,], by= "row.names", all=T)

Row.names tarsusL.x tarsusL.y ecology
1 conirostris 2.984200 2.984200 A
2 difficilis 2.898917 2.898917 B
3 fortis 2.894717 2.894717 D
4 fuliginosa 2.806514 2.806514 C
5 fusca 2.936536 2.936536 E
6 magnirostris 3.038950 NA <NA>
7 pallida 3.089450 NA <NA>
8 parvulus 2.973060 NA <NA>
9 pauper 3.035900 NA <NA>
10 pinaroloxias 2.980200 NA <NA>
11 platyspiza 3.270543 NA <NA>
12 psittacula 3.049120 NA <NA>
13 scandens 2.929033 NA <NA>

The results of merge are sorted by default on the sort key. To turn it o↵:

> geo <- geo[rev(rownames(geo)),] # reverse the species order of geo
> # merge on geo first, then geot
> merge(x=geo["tarsusL"], y=geot[1:5,], by= "row.names", sort=F)

Row.names tarsusL.x tarsusL.y ecology
1 fusca 2.936536 2.936536 E
2 fortis 2.894717 2.894717 D
3 fuliginosa 2.806514 2.806514 C
4 difficilis 2.898917 2.898917 B
5 conirostris 2.984200 2.984200 A

> # geot first, then geo
> merge(x=geot[1:5,], y=geo["tarsusL"], by= "row.names", sort=F)

80 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

Row.names tarsusL.x ecology tarsusL.y
1 conirostris 2.984200 A 2.984200
2 difficilis 2.898917 B 2.898917
3 fuliginosa 2.806514 C 2.806514
4 fortis 2.894717 D 2.894717
5 fusca 2.936536 E 2.936536

7.6 Reshaping R Objects

Internally, R objects are stored as one huge vector. The various shapes of objects are
simply created by R knowing where to break the vector into rows and columns. So it is
very easy to reshape matrices:

> vv <- 1:10 # a vector
> mm <- matrix(vv, nrow=2) # a matrix
> mm

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> dim(mm) <- NULL
> mm <- matrix(vv, nrow=2, byrow=T) # a matrix, but cells are now filled by row
> mm

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10

> dim(mm) <- NULL
> mm # vector is now n a different order because the collapse occurred by column

[1] 1 6 2 7 3 8 4 9 5 10

Other means of ”collapsing” dataframes are:

> unlist(geo) # produces a vector from the dataframe
> # the atomic type of a dataframe is a list
> unclass(geo) # removes the class attribute, turning the dataframe into a
> # series of vectors plus any names attributes, same as setting
> # class(geo) <- NULL
> c(geo) # similar to unclass but without the attributes

7.6. RESHAPING R OBJECTS 81

Practice

1. Recall from the chapter on Data Objects that we were simulating data in di↵erent
treatment groups, and wanting to visualize the groups. Now that we know how to
index and subset, we can use the points function to add di↵erent colored points
to the plot for di↵erent groups.

(a) Now let’s make some data which should di↵er. For the ”low” treatment, sim-
ulate y and y1 as normally distributed data with mean = -2 and sd=.5, and
”high” as mean=5, and sd=3. Remake the dataframe.

> species <- LETTERS[1:7]
> x <- c(2, 4, 8)
> y <- c(rnorm(7, mean=-2, sd=0.5), rnorm(7), rnorm(7, mean=5, sd=3))
> y1 <- c(rnorm(7, mean=-2, sd=0.5), rnorm(7), rnorm(7, mean=5, sd=3))
> y

[1] -1.7324331 -1.6198601 -1.6943661 -1.5550680 -1.5659884 -2.6173233
[7] -2.8677405 0.7436305 0.1378092 -0.5159335 -1.5854286 -0.1596901

[13] 1.6204093 1.8036682 5.4798608 2.8345419 5.9276164 4.8582151
[19] 3.1012095 8.3641030 0.1240776

> y1

[1] -2.7783919 -2.0899730 -2.1505971 -2.0055296 -1.5302355 -2.0239404
[7] -1.8948294 0.4669686 -0.3045481 0.0534605 -1.6229322 -1.6686932

[13] 0.2173391 0.4160709 3.1820160 6.2624768 5.0295437 5.3543262
[19] 1.9442462 11.2799850 -1.9427580

> dat <- data.frame(species, x, treatment=factor(rep(c("low", "med",
+ "high"), each=7), levels=c("low", "med", "high")), y, y1)
> dat

species x treatment y y1
1 A 2 low -1.7324331 -2.7783919
2 B 4 low -1.6198601 -2.0899730
3 C 8 low -1.6943661 -2.1505971
4 D 2 low -1.5550680 -2.0055296
5 E 4 low -1.5659884 -1.5302355
6 F 8 low -2.6173233 -2.0239404
7 G 2 low -2.8677405 -1.8948294
8 A 4 med 0.7436305 0.4669686
9 B 8 med 0.1378092 -0.3045481
10 C 2 med -0.5159335 0.0534605
11 D 4 med -1.5854286 -1.6229322
12 E 8 med -0.1596901 -1.6686932
13 F 2 med 1.6204093 0.2173391

82 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

14 G 4 med 1.8036682 0.4160709
15 A 8 high 5.4798608 3.1820160
16 B 2 high 2.8345419 6.2624768
17 C 4 high 5.9276164 5.0295437
18 D 8 high 4.8582151 5.3543262
19 E 2 high 3.1012095 1.9442462
20 F 4 high 8.3641030 11.2799850
21 G 8 high 0.1240776 -1.9427580

(b) Let’s di↵erentially color the “high”, “medium”, and “low” points. First set up
the plot window without any points by plotting y, y1 with the plot parameter
type="n". Then select only the ”high” points by subsetting. You’ll want
to make an index vector to choose only the points you want. Then use the
points() function (which has the same form as the plot() function, but
only adds points to an existing plot. Choose three di↵erent colors for each
treatment level and plot all the data. Is there any patterning in y, y1?

(c) Ooops! The data are actually supposed to be blocked by treatment (the first
seven rows correspond to low, the second 7 correspond to med, etc.) Can you
remake the dataframe keeping the y and y1 in the same position, but fixing
the treatment?

(d) Make three plots: boxplot of treatment vs. y, treatment vs. y1, and three color
scatterplot of y vs. y1 (treatments should be indicated by di↵erent colors).

2. Matrix reshaping and indexing

(a) Create a matrix with the values 1 through 20, filling four rows. Save it as “x”.
item What are the attributes of x?

(b) Change it to a matrix with 2 rows and 10 columns by changing its attribute.
item Change x to a vector.

(c) Change x to a matrix with four rows, this time filling it by rows rather than
by columns (you may want to check the help page).

(d) Coerce x to a vector again. Is it in the same order as the previous vector?
What does this tell you about R’s default behavior when flattening matrices
to vector?

(e) Create the original x matrix again. Select only the 3rd row, 4th column. What
is it?

(f) Select rows 3 and 4, columns 4 and 5. Print it to the console by using the
print(x) function.

(g) Select the first and last rows, first and last columns. Print it.

3. Reading in Data and adding on

7.6. RESHAPING R OBJECTS 83

(a) Read in the external file bimac.csv in comma separated format. Save it as
“bimac”.

(b) This is a phylogenetic tree and data for the OUCH package. Without going
into details for now, this method allows biologists to specify selective regimes
on branches of the phylogeny, by specifying categories which correspond to
alternative “niches”. This is a body size evolution dataset, and “OU.LP” is a
hypothesis with three size categories. We would like to make three additional
hypotheses. Add additional columns to this dataframe: OU.1 which has values
of “global” for all rows, OU.3 which is the same as OU.LP, except those rows
with “NA” in the species names should get a value of “medium”, and OU.4
which is again similar to OU.LP, except that those rows with “NA” in the
species names get a value of “anc”.

84 CHAPTER 7. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

Chapter 8

Data Input and Output

So far, we have been working within R, either typing data in directly or using R’s functions
to generate data. In order to analyze your own data, you have to load data from an
external file into R. Similarly, to save your work, you’ll probably want to write files from
R to your hard drive. Both of these require interacting with your computer’s operating
system. In this chapter, we’re just going to do it. We’ll talk more about what’s going on
in a later section on the R Environment.

8.1 Getting your data into R

The most convenient way to read data into R is using the read.csv() function. This
requires that your data is saved in .csv format, which is possible from Microsoft Excel
(save as... csv) or any spreadsheet format. It is a text format with data separated by
commas. It is very nice because it is unambiguous, not easily corruptible, and non-
proprietary. Thus it is readable by nearly every program that reads in data.

First, within your“Rclass” folder, create a folder named“Data”. Copy the file “anolis.csv”
and “Iguanamass.csv” into this folder.

Next, from within R, check which working directory you are in. You should be in your
Rclass folder. If you are not, use setwd() to get there.

> getwd()
> setwd("~/Rclass") # my folder is at the top level of my user directory

8.1.1 read.csv

Getting the file in is easy. If it is in csv format, you just use:

85

86 CHAPTER 8. DATA INPUT AND OUTPUT

> read.csv("Data/anolis.csv") # look for the file in the Data directory

This is an Anolis lizard sexual size dimorphism dataset. It has values of dimorphism by
species for di↵erent ecomorphs, or microhabitat specialists.

To save the data, give it a name and save it:

> anolis <- read.csv("Data/anolis.csv")

It is a good practice to always check that the data were read in properly. If it is a large
file, you’ll want to at least check the beginning and end were read in properly:

> head(anolis)

species logSSD ecomorph
1 oc -0.00512 twig
2 eq 0.08454 crown-giant
3 co 0.24703 trunk-crown
4 aln 0.24837 trunk-crown
5 ol 0.09844 grass-bush
6 in 0.06137 twig

> tail(anolis)

species logSSD ecomorph
18 cr 0.39796 trunk-ground
19 st 0.15737 trunk-crown
20 cy 0.26024 trunk-ground
21 alu 0.08216 grass-bush
22 lo 0.13108 trunk
23 an 0.13547 twig

Voila! Now you can plot, take the mean, etc. Which prints out the first six and last six
lines of the file.

R can read in many other formats as well, including database formats, excel native format
(although it is easier in practice to save as .csv), fixed width formats, and scanning lines.
For more information see the R manual ”R Data Import/Export”which you can get from
help.start() or at http://www.r-project.org.

8.2. SUMMARY STATISTICS ON YOUR DATA 87

8.2 Summary statistics on your data

Suppose you wanted to compute and save the means and standard deviations for the
sexual size dimorphism values. A very convenient function for computing any function
over groups in your dataframe (here, ecomorphs), is the function aggregate (look up
help via ?aggregate).

Calculate the mean by ecomorph group:

> aggregate(anolis$logSSD, by=list(anolis$ecomorph), mean)

Group.1 x
1 crown-giant 0.1391750
2 grass-bush 0.1437525
3 trunk 0.1467167
4 trunk-crown 0.2626575
5 trunk-ground 0.3339650
6 twig 0.0848450

Notice we had to type anolis$ in front of the variables we wanted. This is because these
vectors are within the dataframe anolis. To be able to access anolisś goodies, we need
to tell R where to look (more on this later).

Notice that the argument to by, which groups we want the mean over, has to be a list,
so we coerced the variable anolis$ecomorph into a list.

Calculate the mean and the sd by ecomorph group, and this time save them:

> anolis.mean <- aggregate(anolis$logSSD, by=list(anolis$ecomorph), mean)
> anolis.sd <- aggregate(anolis$logSSD, by=list(anolis$ecomorph), sd)
> anolis.sd

Group.1 x
1 crown-giant 0.09909567
2 grass-bush 0.06924584
3 trunk 0.02136480
4 trunk-crown 0.09968872
5 trunk-ground 0.06966130
6 twig 0.07107131

Give the results of aggregate meaningful column names:

> names(anolis.mean) # check that this is what we want to modify

88 CHAPTER 8. DATA INPUT AND OUTPUT

[1] "Group.1" "x"

> names(anolis.mean) <- c("ecomorph", "mean")
> names(anolis.sd) <- c("ecomorph", "sd")

While we’re at it, let’s get the sample size so that we can calculate the standard error,
which is the standard deviation divided by the square root of the sample size.

> anolis.N <- aggregate(anolis$logSSD, by=list(anolis$ecomorph), length)
> names(anolis.N) <- c("ecomorph", "N")

8.2.1 merge

It’s not convenient to have so many data objects, what we’d really like is to have all
summary statistics together in one data frame. So let’s use the merge function.

Merge works two objects at a time, and merges by default on the common column names
(here, ecomorph):

> merge(anolis.mean, anolis.sd)

ecomorph mean sd
1 crown-giant 0.1391750 0.09909567
2 grass-bush 0.1437525 0.06924584
3 trunk 0.1467167 0.02136480
4 trunk-crown 0.2626575 0.09968872
5 trunk-ground 0.3339650 0.06966130
6 twig 0.0848450 0.07107131

Otherwise, you must specify by=. Or to be safe, you can specify it, it’s good practice:

> out <- merge(anolis.mean, anolis.sd, by="ecomorph")

There is also options for by.x= and by.y= in case your columns have di↵erent names in
the two objects – you can tell R which two columns to match.

Do it again to add the third object, N:

> out <- merge(out, anolis.N, by="ecomorph")
> out

8.3. WRITE.CSV 89

ecomorph mean sd N
1 crown-giant 0.1391750 0.09909567 4
2 grass-bush 0.1437525 0.06924584 4
3 trunk 0.1467167 0.02136480 3
4 trunk-crown 0.2626575 0.09968872 4
5 trunk-ground 0.3339650 0.06966130 4
6 twig 0.0848450 0.07107131 4

Now, it’s easy to compute the standard error:

> out$se <- out$sd / sqrt(out$N)
> out

ecomorph mean sd N se
1 crown-giant 0.1391750 0.09909567 4 0.04954783
2 grass-bush 0.1437525 0.06924584 4 0.03462292
3 trunk 0.1467167 0.02136480 3 0.01233497
4 trunk-crown 0.2626575 0.09968872 4 0.04984436
5 trunk-ground 0.3339650 0.06966130 4 0.03483065
6 twig 0.0848450 0.07107131 4 0.03553565

8.3 write.csv

Writing out objects is even simpler. To write out a .csv file:

> write.csv(out, "anolis.summary.csv", row.names=FALSE)

The argument “row.names=” is optional, but I like to put it in or else you get row names
added to your spreadsheet as an extra column. Leave it as TRUE (the default) only if
the names are meaningful and useful.

8.4 save

You can also save the objects as R data files (.Rdat or .rda), which are R’s binary format.
The objects are saved directly, so you can just slurp up the .Rdata file and you will have
your objects back. This is handy if you want to continue your analysis with your objects
later.

> save(anolis, anolis.mean, anolis.sd, anolis.N, file="anolis.out.Rdata")

90 CHAPTER 8. DATA INPUT AND OUTPUT

The command to load these back in is:

> load("anolis.out.Rdata")

Which will restore your objects.

8.5 Saving plots

Let’s make some plots to visualize SSD by ecomorph type. Recall that we can get box
plots (median, quartiles, and range):

> barplot(out$mean, names.arg=out$ecomorph)

crown−giant trunk trunk−ground

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Let’s add some color and a label for the y variable. Rainbow is a function which will
generate a pallete of colors according to the number of colors you specify.

8.5. SAVING PLOTS 91

> barplot(out$mean, names.arg=out$ecomorph, col=rainbow(6), ylab="logSSD")

crown−giant trunk trunk−ground

lo
gS
SD

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Alternatively, we may want to visually accentuate the ”high” versus ”low” dimorphism
groups (for a talk for instance):

> bb <- barplot(out$mean, names.arg=out$ecomorph, col=c("red", "red", "red", "blue",
+ "blue", "red"), ylab="logSSD", cex.lab=1.5, ylim=c(0, max(out$mean)+.1))
> bb

[,1]
[1,] 0.7
[2,] 1.9
[3,] 3.1
[4,] 4.3
[5,] 5.5
[6,] 6.7

92 CHAPTER 8. DATA INPUT AND OUTPUT

> arrows(bb, out$mean, bb, out$mean+out$se, angle=90)

crown−giant trunk trunk−ground

lo
gS
SD

0.
0

0.
1

0.
2

0.
3

0.
4

We’ve also made the y-axis label bigger using cex.lab=1.5, and finally added error bars
by using the arrows() function. This function basically draws the error bars as line
segments specified by the first four arguments. The angle=90 tells the function to make
the arrow heads flat, as in error bars. Read ?arrows for more info. Finally, because
the graph was not big enough to plot the highest error bar, I had to increase the y-limit
using the ylim argument, which sizes the y-axis according to the lower and upper bounds
given.

8.5.1 pdf

Now, if we are quite happy with our plot, we can save it as a pdf file. First we have to
set the graphical devide to a pdf printer. Then plot the file, then turn the pdf device o↵
(or it will keep writing to the same file every time you plot).

8.6. MESSIER INPUT FILES 93

> pdf(file="anolisMeanSSD.pdf") # turns on the pdf device for plotting
> barplot(out$mean, names.arg=out$ecomorph, col=c("red", "red", "red", "blue",
+ "blue", "red"), ylab="logSSD", cex.lab=1.5)
> dev.off() # turns off pdf device for output

quartz
2

8.6 Messier input files

The first example of a csv file was very easy to bring in to R. If it was hand-entered, you
may have several issues including:

• extra delimiters in some rows (extra commas, etc.) so that some rows have extra
columns

• extra header lines

• lots of missing values

• mixed character and numeric input

Any of these issues will cause problems because what you are reading in is a data frame.
R expects columns to be of the same type, and the object is square, and etc.

Extra header lines are really easy to fix using the skip= option. However, the other
issues will have to be fixed by editing your .csv file, or by writing code that reads in the
lines one by one, makes the appropriate changes, and then writing out a “clean” .csv file.
Which way to go should be determined by how much work it will be to hand-edit vs.
program, which will depend a lot on how many problems the file contains, and whether
they are unique or not. (Probably 80% or more of your R programming e↵orts are aimed
at getting your input data into shape for analysis – which is why we cover these in the
next section).

8.6.1 Input files generated by data loggers

An easier case to handle: files that are generated by computer. Take, for example, the file
format generated from our hand-held Ocean Optics specroradiometer. It is very regular
in structure, and we have tons of data files, so it is well worth the programming e↵ort to
code a script for automatic file input.

First, you can open the file below in a text editor. If you’d rather open it in R, you can
use:

94 CHAPTER 8. DATA INPUT AND OUTPUT

> readLines("Data/20070725_01forirr.txt")

Notice that there is a very large header, in fact the first 17 lines. Notice also that the
last line will cause a problem. Also, the delimiter in this file is tab (backslash t).

> temp <- readLines("Data/20070725_01forirr.txt")
> head(temp)

[1] "SpectraSuite Data File"
[2] "++++++++++++++++++++++++++++++++++++"
[3] "Date: Wed Jul 25 10:39:54 HST 2007"
[4] "User: guest"
[5] "Dark Spectrum Present: Yes"
[6] "Reference Spectrum Present: No"

> tail(temp)

[1] "888.38\t3.1306E-01"
[2] "888.54\t2.8153E-01"
[3] "888.71\t2.8245E-01"
[4] "888.87\t1.8988E-01"
[5] "889.04\t1.8988E-01"
[6] ">>>>>End Processed Spectral Data<<<<<"

We can solve these issues using the“skip”and the“comment.char”arguments of read.table
to ignore both types of lines, reading in only the ”good stu↵”. Also, the default delimiter
in this function is the tab:

> dat <- read.table(file="Data/20070725_01forirr.txt", skip=17, comment.char=">")
> names(dat) <- c("lambda", "intensity")
> head(dat)

lambda intensity
1 177.33 0
2 177.55 0
3 177.77 0
4 177.99 0
5 178.21 0
6 178.43 0

> tail(dat)

8.6. MESSIER INPUT FILES 95

lambda intensity
3643 888.21 0.29491
3644 888.38 0.31306
3645 888.54 0.28153
3646 888.71 0.28245
3647 888.87 0.18988
3648 889.04 0.18988

The file produces (useless) rows of data outside of the range of accuracy of the spec-
traradiometer. We can get rid of these by subsetting the data, selecting only the range
300-750nm:

> dat <- dat[dat$lambda >= 300,] # cut off rows below 300nm
> dat <- dat[dat$lambda <= 750,] #cut off rows above 750nm

Or do both at once:

> dat <- dat[dat$lambda >= 300 & dat$lambda <= 750,]

If we are going to be doing this subsetting over and over, we might want to save this as
an index vector which tells us the position of the rows of data we want to keep in the
dataframe (don’t worry, we’ll cover this again in the workhorse functions chapter).

> oo <- dat$lambda >= 300 & dat$lambda <= 750
> dat <- dat[oo,] # same as longer version above

We can now save the cleaned up version of the irradiance data:

> write.csv(dat, "20070725_01forirr.csv")

96 CHAPTER 8. DATA INPUT AND OUTPUT

Chapter 9

All about trees by Brian O’Meara

Goals:

• Study the information content of phylogenetically structured data

• Learn about particular tree formats in ape, phylobase, and ouch

• Learn how to hand-make trees

• Learn how to import trees from nexus and newick formats

• Learn tree conversion from one format to another

Concepts:

• file access

• classes

• coercion

9.1 Tree objects

In nature, a tree is a large perennial woody plant. It has roots, a main trunk, branches,
and leaves. In graph theory, a tree is a network where there is only one path between
any two nodes (in other words, a network with no cycles). In phylogenetics, we use ideas
and terminology from both graph theory and nature. Terminal taxa are also known as
leaves, terminals, OTUs (”Operational Taxonomic Units”), tips, or simply taxa.
Branches are also called edges. Internal nodes (places where two or more branches
connect) are also known as vertices and sometimes simply nodes (technically, leaves are

97

98 CHAPTER 9. ALL ABOUT TREES BY BRIAN O’MEARA

also nodes). A rooted tree has one node designated as the root, and all other nodes
are descended from this root. An unrooted tree has no root designated. Traditionally,
the root node has at least two descendants; it may also have a subtending branch. A
tree where every internal node has two and only two descendants is known as a binary
or bifurcating tree. A tree where at least one internal node has more than two descen-
dants is said to be multifurcating; such a node is a polytomy. Trees in phylogenetics
generally represent either species trees (a history of the splitting of interbreeding pop-
ulations) or gene trees (a history of the coalescence of gene copies). In both cases, it
is generally believed that the true process is bifurcating, so that each split results in two
descendants. Thus, polytomies on trees are generally taken as representing uncertainty
in the relationships. Branches may have lengths; these lengths may correspond to time,
amount of change in some set of characters, number of speciation events, or some other
measure. A tree where all branch lengths from root to tips are equal is known as an
ultrametric tree. A tree without branch lengths is known as a topology. A clade is
an ancestor and all its descendants. Any edge corresponds to a bipartition: a division
of the tree into two parts connected by that edge (if a root were inserted on the edge,
then each of those parts would be a clade).

9.1.1 Newick

A very basic tree description is Newick (named after the seafood restaurant in New
Hampshire where it was formalized; it is also called New Hampshire format for that
reason). It is simply a string. Each nesting on the tree corresponds to a parenthetical
statement. For example, for this tree: Taxa G and F form a clade, as do G, F, and E, as
do A and B, and so forth. Thus, to create a Newick string, just go down the tree, nesting
as you go:

(G,F)

((G,F),E)

other side:

(A,B)

(C,D)

((A,B),(C,D))

all together:

(((G,F),E),((A,B),(C,D)))

And that’s it (it will be clearer in the lecture) If a tree has branch lengths, these are
entered following the descendant clade. For example, if the branch leading to G has
length 1.0, we would write G:1.0 rather than just G. If the tree is ultrametric, and the
branch below the common ancestor of G and F is of length 1.1, and the branch below

9.1. TREE OBJECTS 99

A

B

C

D

E

F

G

Figure 9.1: A simple tree

that of length 3.5, we could write

((G:1.0,F:1.0):1.1,E:2.1):3.5

And so forth. One problem with Newick representation is that there are many ways
of representing the same tree. At every node, one can rotate the descendant branches
(switching the left and right positions) and get the same tree (for example, imagine
switching the G and E labels). Thus, the Newick strings

((G,F),E)

and

((F,G),E)

describe the same trees, though it might not be easy to tell at first glance. This is generally
an issue for any tree representation. Newick strings also don’t lend themselves to easy

100 CHAPTER 9. ALL ABOUT TREES BY BRIAN O’MEARA

tree traversal (moving up or down the tree). In most software, some other representation
is used.

9.1.2 phylo (ape 1.9 or above)

The ape package (?) uses a di↵erent representation of trees. It uses R structures, lists,
matrices, and vectors to store a tree. Each node in the tree receives a number. For
example, here is the tree from before in ape format. First let’s clear any old workspace,
load our libraries, and load our tree called ”simpletree” from ”Rdata/simpletree.rda”.

> rm(ls=list())
> require(ape)
> require(ouch)
> require(phylobase)
> load("Rdata/simpletree.rda")

Here is simpletree with the node numbers printed. It is printed with the following
commands:

> plot(simpletree,no.margin=TRUE)
> nodelabels()
> tiplabels()

For a tree with N tips, the tips have numbers 1...N and the nodes have numbers greater
than N (this is in contrast to how this was done in earlier (<1.9) versions of ape). These
numbers are used to store information about the tree’s structure. To do this, a matrix
is created, with height corresponding to the number of internal and terminal nodes and
width 2. The first column of the matrix has the node at the beginning of the branch,
the second has the node at the end of the branch. For example, for our simple tree, this
matrix is

> simpletree$edge

[,1] [,2]
[1,] 8 9
[2,] 9 10
[3,] 10 1
[4,] 10 2
[5,] 9 11
[6,] 11 3
[7,] 11 4
[8,] 8 12

9.1. TREE OBJECTS 101

[9,] 12 5
[10,] 12 13
[11,] 13 6
[12,] 13 7

This alone is enough for a basic topology. However, it might be nice to know what the
taxa actually are, rather than just numbers. To do this, a character vector with as many
entries as the number of tips is used. In the example tree, this is

> simpletree$tip.label

[1] "A" "B" "C" "D" "E" "F" "G"

It’s possible that internal nodes have labels, too (for example, the most recent common
ancestor of a set of birds might be labeled ”Aves”). If so, an optional node.label is used.
If branch lengths are known, they are included as the numeric vector edge.length.

> simpletree$edge.length

[1] 1.5 1.0 0.5 0.5 1.0 0.5 0.5 2.0 1.0 0.5 0.5 0.5

Finally, there are a few other elements (Nnode, the number of internal nodes; class=phylo)
to give more information. To see what the internal representation of a tree is, you can
use unclass (the S4 analog is attributes):

> unclass(simpletree)

$edge
[,1] [,2]

[1,] 8 9
[2,] 9 10
[3,] 10 1
[4,] 10 2
[5,] 9 11
[6,] 11 3
[7,] 11 4
[8,] 8 12
[9,] 12 5

[10,] 12 13
[11,] 13 6
[12,] 13 7

102 CHAPTER 9. ALL ABOUT TREES BY BRIAN O’MEARA

$tip.label
[1] "A" "B" "C" "D" "E" "F" "G"

$Nnode
[1] 6

$edge.length
[1] 1.5 1.0 0.5 0.5 1.0 0.5 0.5 2.0 1.0 0.5 0.5 0.5

phylo trees are S3 objects. We’ll be learning more about them later in the week, but an
important thing to know is that you directly access any element of them by using the $
operator (as was done above). Optional elements, or even elements of your own devising,
can be added to them, too, using the same operator.

9.1.3 ouchtree

OUCH (the most recent version) uses a di↵erent tree structure than does ape. First, OUCH’s
is an S4 class, rather than S3. There are several di↵erences between them, which you’ll
learn later. There are two main distinctions that will be important now. It helps to
have a metaphor: think of a car. The S3 representation of a car is all the parts, neatly
disassembled and laid out. The S4 representation of a car is a closed box. With S3,
you can look at and manipulate any part of the car directly and manipulate it (using
the $ operator). You could check the amount of gas in the tank by directly accessing
the gas. With S4, you should use a method, if one exists, to access and manipulate
elements. For example, you could check the gas in the tank using the fuel gauge, if the
fuel gauge method exists and works properly. S3 objects can be built up piecemeal, and
there aren’t built-in checks to make sure that everything is correct: if you forget to add
a wheel element to the S3 char, you won’t know there’s a problem until some function
tries to access it and fails. S4 objects are instantiated once, when you pass them all the
initialization info they need (they often have defaults, and often have internal consistency
checks). OUCH uses the ouchtree class as a basic tree class, then derives other classes
from this for storing information on analyses. The ouchtree class is:

setClass(

'ouchtree',

representation=representation(

nnodes = 'integer',

nodes = 'character',

ancestors = 'character',

9.1. TREE OBJECTS 103

nodelabels = 'character',

times = 'numeric',

root = 'integer',

nterm = 'integer',

term = 'integer',

anc.numbers = 'integer',

lineages = 'list',

epochs = 'list',

branch.times = 'matrix',

depth = 'numeric'

)

)

At first glance, it looks like creating a new ouchtree object will be a lot of work: there
are 13 di↵erent elements, some of them vectors, built in the class. However, with S4
objects, the beauty of constructors comes into play. The constructor for a new ouchtree
is just the function

ouchtree(nodes, ancestors, times, labels = as.character(nodes))

This function only has four arguments, one of them optional. Using the function and
these elements, all the other elements of the class are initialized. The first element is
nodes, a character vector of node ids (including internal nodes). Unlike ape, the leaves
do not need to have smaller ids than internal nodes. The second argument is ancestors,
a character vector of node ids of the ancestors for the nodes in the nodes vector. The
nodes and ancestors vectors almost correspond to the second and first columns of the
ape edge matrix, respectively, with the exception that ouchtree includes the root node
with an ancestor of NA. The third element, times, represents the height of each node
from the root. Remember that ape’s edge.length vector has the length of the branch
subtending each node; instead, ouchtree has the sum of the lengths of all branches
connecting a given node to the root. Again, the root node is included in ouchtree (with
height 0) but not in ape. The fourth argument, labels, is a vector of labels for both tips
and internal nodes. If internal nodes do not have names, they get a label of <NA>. For
example, our example tree, when converted to ouchtree format, is

> attributes(simpletreeouch)$nodes

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13"

> attributes(simpletreeouch)$ancestors

104 CHAPTER 9. ALL ABOUT TREES BY BRIAN O’MEARA

[1] NA "3" "1" "6" "6" "1" "2" "2" "3" "4" "4" "5" "5"

> attributes(simpletreeouch)$times

[1] 0.0000000 0.8333333 0.6666667 0.8333333 0.8333333 0.5000000 1.0000000
[8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

> attributes(simpletreeouch)$nodelabels

[1] "" "" "" "" "" "" "G" "F" "E" "D" "C" "B" "A"

One other element of ouchtree, created on initialization, is a matrix showing shared
amount of time on a tree between two tips (which may be the same tip). This, multiplied
by a rate parameter, becomes a variance-covariance matrix under a Brownian motion
model, which we’ll be discussing in the course.

> attributes(simpletreeouch)$branch.times

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1.0000000 0.8333333 0.6666667 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0.8333333 1.0000000 0.6666667 0.0000000 0.0000000 0.0000000 0.0000000
[3,] 0.6666667 0.6666667 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[4,] 0.0000000 0.0000000 0.0000000 1.0000000 0.8333333 0.5000000 0.5000000
[5,] 0.0000000 0.0000000 0.0000000 0.8333333 1.0000000 0.5000000 0.5000000
[6,] 0.0000000 0.0000000 0.0000000 0.5000000 0.5000000 1.0000000 0.8333333
[7,] 0.0000000 0.0000000 0.0000000 0.5000000 0.5000000 0.8333333 1.0000000

The entire content of the simpletreeouch object can be dumped to screen using the
following command (not executed here to save paper):

> attributes(simpletreeouch)

9.1.4 phylo4 (phylobase)

Phylobase is a new package for phylogenetic trees and datasets, started in December
2007 at a NESCent-sponsored hackathon. Its development is ongoing, so some of its
function names and class elements may change. We’ll be discussing it more later in the
course. It has two main classes: phylo4 and phylo4d. The first is just a tree class,
the second includes a tree and data. Its tree class is closely (and intentionally) based
on ape’s phylo object: it has an edge matrix, edge.length vector, tip.label vector,

9.1. TREE OBJECTS 105

node.label vector (not optional), and Nnode variable. It also has an edge.label vector,
which is distinct from the node.label and tip.label vectors (i.e., may have di↵erent
names) and an element, root.edge that can specify where the root is (or NA if the
tree is unrooted). phylo4d is derived from the phylo4 class (a concept common in S4
and in object-oriented languages, like C++) and thus has all the elements of phylo4,
plus elements tipdata, nodedata, edgedata for storing data.frames of data (typically,
this will just be data at tips, such as nucleotide sequences, but internal nodes could have
reconstructed sequences and their might be data for edges, too, such as estimated changes
on the tree). The constructor for a phylo4 object is

phylo4(edge, edge.length = NULL, tip.label = NULL, node.label = NULL, edge.label
= NULL, root.edge = NULL, ...)

The only required argument is edge (a phylo-style edge matrix). For everything else,
there are default constructors that will create names and other needed information.

The entire content of the simpletree object in phylo4 are

> attributes(as(simpletree,"phylo4"))

$edge
ancestor descendant

[1,] 8 9
[2,] 9 10
[3,] 10 1
[4,] 10 2
[5,] 9 11
[6,] 11 3
[7,] 11 4
[8,] 0 8
[9,] 8 12

[10,] 12 5
[11,] 12 13
[12,] 13 6
[13,] 13 7

$edge.length
8-9 9-10 10-1 10-2 9-11 11-3 11-4 0-8 8-12 12-5 12-13 13-6 13-7
1.5 1.0 0.5 0.5 1.0 0.5 0.5 NA 2.0 1.0 0.5 0.5 0.5

$label
1 2 3 4 5 6 7

"A" "B" "C" "D" "E" "F" "G"

$edge.label

106 CHAPTER 9. ALL ABOUT TREES BY BRIAN O’MEARA

named character(0)

$order
[1] "unknown"

$annote
list()

$class
[1] "phylo4"
attr(,"package")
[1] "phylobase"

9.2 Getting trees into R

There are ways to use R to estimate phylogenetic trees given a set of taxa with characters.
For more information on this, see Paradis (2006). In many cases, however, there will be
trees saved in an existing file, saved as a result of an analysis in programs such as PAUP
or MrBayes. This section will discuss getting those trees into R. Note there may be
additional ways to load trees not discussed here. For example apTreeshape can load trees
directly from http://www.treebase.org if you know the appropriate study number; as
these trees lack branch lengths, they are generally unsuitable for the sort of analyses we
will be doing in this course.

9.2.1 Using ape

Ape can read Newick trees by using the function:

read.tree(file = "", text = NULL, tree.names = NULL, skip = 0, comment.char
= "#", ...)

There are three main ways to use this function:

read.tree(): Gets interactive input of a Newick string from the user

read.tree(text="((A,B),C);"): Inputs a Newick tree string directly. Note that the
tree string needs to end with a semicolon

read.tree(file="mytree.txt"): Inputs one or more Newick strings from a file.

See the documentation for the (little-used) other arguments.

The other way ape can get trees is from NEXUS files. NEXUS is a standard (see Maddison
et al. 1997) used in many phylogenetics programs like PAUP, MrBayes, MacClade, and

http://www.treebase.org

9.3. GOING FROM ONE FORMAT TO ANOTHER 107

Mesquite and can contain blocks with trees, characters, batch commands for programs,
and more. Ape can get trees (and only trees) from such files using the command

read.nexus(file, tree.names = NULL)

Ape treats all trees as rooted and ignores tree weights (which can be output by PAUP
and MrBayes). One gotcha associated with ape’s tree input functions is that if the file
has one tree, the returned item is a tree object, but if it contains more than one tree, a
list of trees is returned. These two kinds of objects must be used di↵erently in R.

9.2.2 Using phylobase

One of the key features of phylobase is the ability to load trees and data directly from
NEXUS files. To get trees, the function is

NexusToPhylo4(fileToRead, multi = FALSE)

This works as you’d expect. If multi=FALSE, the default, it works as ape’s input functions
do, returning a single object if there is one tree in the file and a list of objects if there are
multiple trees. If multi=TRUE, it always returns a list, even if there is just one element.
This way, the type of the returned item is constant regardless of the number of trees. For
data alone,

NexusToDataFrame(fileToRead, allchar = FALSE, polymorphictomissing = TRUE,
levelsall = TRUE)

can be used (it has features to convert categorical data to factors, DNA data to strings,
continuous data to an appropriate data.frame, and more – see documentation).

NexusToPhylo4D(fileToRead, multi=FALSE, allchar=FALSE, polymorphictomiss-
ing=TRUE, levelsall=TRUE)

loads data and trees into one phylo4d object. Note that the names of these functions may
change in the future to make capitalization more consistent with the rest of phylobase.

9.3 Going from one format to another

The R packages ape, phylobase, ouch, geiger, apTreeshape, picante, laser, phangorn,
PhySim, ade4, PHYLOGR, and others all use trees (see http://www.r-phylo.org). Un-
fortunately, they often use di↵erent tree formats, sometimes within the same package!
[For example, if the format has changed and not all functions have been updated to
use the new version]. There are ways to convert between formats. Some use func-
tions of the type you’ve come to expect: output<-in2out(input). Others use coercion:
output<-as(input, "output class name"). This has the advantage of being much
more standardized (no need to wonder whether the function is ’in2out’ or ’in.to.out’

http://www.r-phylo.org

108 CHAPTER 9. ALL ABOUT TREES BY BRIAN O’MEARA

or ’convertIn2Out’) and generally simpler to use. One thing to note is that there are

Table 9.1: The input object is always called ”object”

from to command package
phylo phylo4 as(object, "phylo4") phylobase
phylo4 phylo as(object, "phylo") phylobase
phylo4d phylo as(object, "phylo") phylobase
phylo4 phylo4d as(object, "phylo4d") phylobase
phylo4d phylo4 as(object, "phylo4d") phylobase
phylo4d phylog (ade4) as(object, "phylog") phylobase
hclust phylo as.phylo(object, ...) ape
phylo hclust as.hclust(object, ...) ape
phylog (ade4) phylo as.phylo(object, ...) ape
old phylo phylo old2new.phylo(object) ape
phylo old phylo new2old.phylo(object) ape
phylo treeshape as.treeshape(object, model, p, ...) apTreeshape
treeshape phylo as.phylo(object, ...) apTreeshape
phylo ouchtree ape2ouch(object, ...) ouch
phylo earlier ouch format ape2ouch(object, data, ...) geiger

two ape2ouch functions. The one in geiger converts a phylo object and data to the
data.frame that earlier versions of ouch used. The one in the lastest version of ouch
converts just a phylo object to an ouchtree object.

9.4 Exercises

1. Take simpletree in ape’s phylo format and set all branch lengths equal to 1.0, plot
to verify.

2. Convert simpletree to phylobase’s phylo4 format. Which packages do you need
in order to do this? Plot with the display nodes option (show.node=T).

3. Convert to ouch. Plot with displaying nodes (node.names=T). Convert to data
frame representation.

4. Assign node labels to your tree object. What is the easiest way to do that?

Try assigning the same value for the node label to more than one node in the
tree (not the tips).

Try assigning unique node labels. Do both work? Are there problems?

9.4. EXERCISES 109

> plot(simpletree,no.margin=TRUE)
> nodelabels()
> tiplabels()

A

B

C

D

E

F

G

8

9

10

11

12

13

1

2

3

4

5

6

7

Figure 9.2: A simple tree with ape’s numbering of nodes included

110 CHAPTER 9. ALL ABOUT TREES BY BRIAN O’MEARA

Chapter 10

Working with Trees by Michael
Alfaro

10.1 Introduction

In this class you will be introduced to a number of comparative methods in R. Nearly
all of them will require you to manipulate a phylogenetic tree in some way. This section
provides a brief introduction to tree structures in R. We’ll learn how to read newick and
nexus formatted trees, plot them, and work with branch lengths.

10.2 Getting Started

First lets load APE, GEIGER, and some example data sets

> require(geiger) ##load packages
> data(geospiza) ## data from geiger
> geospiza

$geospiza.tree

Phylogenetic tree with 14 tips and 13 internal nodes.

Tip labels:
fuliginosa, fortis, magnirostris, conirostris, scandens, difficilis, ...

Rooted; includes branch lengths.

111

112 CHAPTER 10. WORKING WITH TREES BY MICHAEL ALFARO

$geospiza.data
wingL tarsusL culmenL beakD gonysW

magnirostris 4.404200 3.038950 2.724667 2.823767 2.675983
conirostris 4.349867 2.984200 2.654400 2.513800 2.360167
difficilis 4.224067 2.898917 2.277183 2.011100 1.929983
scandens 4.261222 2.929033 2.621789 2.144700 2.036944
fortis 4.244008 2.894717 2.407025 2.362658 2.221867
fuliginosa 4.132957 2.806514 2.094971 1.941157 1.845379
pallida 4.265425 3.089450 2.430250 2.016350 1.949125
fusca 3.975393 2.936536 2.051843 1.191264 1.401186
parvulus 4.131600 2.973060 1.974420 1.873540 1.813340
pauper 4.232500 3.035900 2.187000 2.073400 1.962100
Pinaroloxias 4.188600 2.980200 2.311100 1.547500 1.630100
Platyspiza 4.419686 3.270543 2.331471 2.347471 2.282443
psittacula 4.235020 3.049120 2.259640 2.230040 2.073940

The geospiza object is a list that contains a tree and a data set of measurements on the
tip species. We can use the str() command to look more closely at geospiza. We will
separate the tree and data objects so that we can more easily work with them.

> str(geospiza) ## structure gives you info on what is in the file

List of 2
$ geospiza.tree:List of 4
..$ edge : num [1:26, 1:2] 15 16 17 18 19 20 21 22 23 24 ...
..$ edge.length: num [1:26] 0.2974 0.0492 0.0686 0.134 0.1035 ...
..$ Nnode : int 13
..$ tip.label : chr [1:14] "fuliginosa" "fortis" "magnirostris" "conirostris" ...
..- attr(*, "class")= chr "phylo"

$ geospiza.data:'data.frame': 13 obs. of 5 variables:
..$ wingL : num [1:13] 4.4 4.35 4.22 4.26 4.24 ...
..$ tarsusL: num [1:13] 3.04 2.98 2.9 2.93 2.89 ...
..$ culmenL: num [1:13] 2.72 2.65 2.28 2.62 2.41 ...
..$ beakD : num [1:13] 2.82 2.51 2.01 2.14 2.36 ...
..$ gonysW : num [1:13] 2.68 2.36 1.93 2.04 2.22 ...

> tree<-geospiza$geospiza.tree ## separate the tree
> data<-geospiza$geospiza.data ## separate the dataframe

10.3. BASIC TREE PLOTTING 113

10.3 Basic Tree Plotting

If we want to visualize the tree we can use the plot command. Often we will want to
draw the tree in a consistent way so that it is obvious when topologies are the same or
di↵erent. The ladderize command can be used to always place the smallest clades on the
right or left hand side of a figure.

> layout(matrix(1:2, 2, 1))
> plot(tree, main = 'unladderized', cex = 0.75, no.margin = 'T')
> plot(ladderize(tree, right = F), main = 'ladderized left', cex = 0.75, no.margin = 'T')

fuliginosa
fortis

magnirostris
conirostris
scandens
difficilis

pallida
parvulus
psittacula

pauper
Platyspiza
fusca
Pinaroloxias
olivacea

fuliginosa
fortis

magnirostris

conirostris
scandens
difficilis

pallida

parvulus
psittacula

pauper

Platyspiza

fusca
Pinaroloxias
olivacea We can save trees

as pdf files with the pdf() command. This command redirects all graphical output to
the pdf file, so make sure to include the dev.off() command after your have made your
plot.

> pdf("geoTree.pdf")
> plot(tree)
> dev.off()

114 CHAPTER 10. WORKING WITH TREES BY MICHAEL ALFARO

quartz
2

10.4 Tree Structure

The basic tree structure in R is called an edge matrix. Let’s take a look at the edge
matrix for the geospiza tree.

> tree$edge

[,1] [,2]
[1,] 15 16
[2,] 16 17
[3,] 17 18
[4,] 18 19
[5,] 19 20
[6,] 20 21
[7,] 21 22
[8,] 22 23
[9,] 23 24

[10,] 24 1
[11,] 24 2
[12,] 23 3
[13,] 22 4
[14,] 21 5
[15,] 20 6
[16,] 19 25
[17,] 25 7
[18,] 25 26
[19,] 26 27
[20,] 27 8
[21,] 27 9
[22,] 26 10
[23,] 18 11
[24,] 17 12
[25,] 16 13
[26,] 15 14

You can see that the edge matrix has two columns. The number of rows equals the
number of all of the tips of the tree plus all of the internal nodes. The entries in the
first column are parent nodes and the entries in the second column show a daughter node

10.4. TREE STRUCTURE 115

from the corresponding parent. In a bifucating tree, each parent node will appear in
column 1 twice and the entries in column two of those rows will be the node numbers of
the daughters. We can use the nodelabels() and tiplabels() commands to see this.

> plot(tree)
> nodelabels()
> tiplabels()

fuliginosa
fortis

magnirostris
conirostris
scandens
difficilis

pallida
parvulus
psittacula

pauper
Platyspiza
fusca
Pinaroloxias
olivacea

15

16

17

18

19

20

21
22

23
24

25

26
27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Check the tree fig-

ure and verify that the parent nodes (in blue) appear in column 1 of the edge matrix
twice and that the column 2 entries for those rows point to their respective daughter
nodes (in yellow boxes). To see the tip names of a tree we ask for the tip.label attribute

of the tree.

> str(tree)

List of 4
$ edge : num [1:26, 1:2] 15 16 17 18 19 20 21 22 23 24 ...

116 CHAPTER 10. WORKING WITH TREES BY MICHAEL ALFARO

$ edge.length: num [1:26] 0.2974 0.0492 0.0686 0.134 0.1035 ...
$ Nnode : int 13
$ tip.label : chr [1:14] "fuliginosa" "fortis" "magnirostris" "conirostris" ...
- attr(*, "class")= chr "phylo"

> tree$tip.label

[1] "fuliginosa" "fortis" "magnirostris" "conirostris" "scandens"
[6] "difficilis" "pallida" "parvulus" "psittacula" "pauper"

[11] "Platyspiza" "fusca" "Pinaroloxias" "olivacea"

We can also get the branch lengths for the tree.

> tree$edge.length

[1] 0.29744 0.04924 0.06859 0.13404 0.10346 0.03550 0.00917 0.07333 0.05500
[10] 0.05500 0.05500 0.11000 0.18333 0.19250 0.22800 0.24479 0.08667 0.05167
[19] 0.01500 0.02000 0.02000 0.03500 0.46550 0.53409 0.58333 0.88077

10.5 More Tree Plotting Tricks

Now that you are familiar with the basic structure of trees in R, we can explore some of
the tree plotting options. It is easy to specify colors and sizes of branches and tip labels
using plot options. You can use the help(phylo) to see a list of more options.

> layout(matrix(1:4, 2, 2))
> plot(tree)
> nodelabels(col="red",bg="yellow")
> plot(tree,tip.color="blue")
> plot(tree, type = 'radial', show.tip.label = 'F')
> plot(tree,
+ edge.color = sample(colors(), length(tree$edge)/2),
+ edge.width = sample(1:10, length(tree$edge)/2, replace = TRUE))

10.6. TREE INPUT AND OUTPUT 117

fuliginosa
fortis
magnirostris
conirostris
scandens
difficilis
pallida
parvulus
psittacula
pauper
Platyspiza
fusca
Pinaroloxias
olivacea

15
16
17
18
19
20
21
222324

25
2627

fuliginosa
fortis
magnirostris
conirostris
scandens
difficilis
pallida
parvulus
psittacula
pauper
Platyspiza
fusca
Pinaroloxias
olivacea

fuliginosa
fortis
magnirostris
conirostris
scandens
difficilis
pallida
parvulus
psittacula
pauper
Platyspiza
fusca
Pinaroloxias
olivacea

10.6 Tree Input and Output

R can read both newick and nexus-formatted tree trees using the APE package.

10.6.1 Reading Trees

To read in a trees use the read.tree() command for Newick formatted tree and read.nexus()
for NEXUS tree files.

> whale.phy<-read.tree('Data/whale.phy')
> whale.nex<-read.nexus('Data/whale.nex')
> layout(matrix(1:2, 2, 1))
> plot(whale.phy, cex = 0.33)
> plot(whale.nex, cex = 0.33)

118 CHAPTER 10. WORKING WITH TREES BY MICHAEL ALFARO

Kogia breviceps KBU72040 Kogia simus AF304072Physeter catodon X75589Platanista gangetica AF304070 Platanista minor X92543Tasmacetus shepherdi AF334484Mesoplodon ginkgodens AY579544Mesoplodon europaeus X92537Mesoplodon bowdoini AY579536Mesoplodon traversii AY579556Mesoplodon stejnegeri AY579554Mesoplodon grayi AY579546Mesoplodon densirostris X92536Mesoplodon hectori AY228109 Mesoplodon bidens X92538Mesoplodon mirus AY579552Mesoplodon layardii AY579550Indopacetus pacificus AY162441 AY162442 Hyperoodon planifrons AY579559Hyperoodon ampullatus X92539Berardius bairdii X92541Berardius arnuxii AY579565Ziphius cavirostris AF304075 Stenella longirostris AF084103Sousa chinensis AF084080Stenella attenuata AF084096Lagenodelphis hosei AF084099 Delphinus capensis AF084087 Delphinus delphis AF084085 Delphinus tropicalis AF084088Stenella clymene AF084083Stenella coeruleoalba AF084082 Stenella frontalis AF084090Tursiops aduncus AF084091 Tursiops truncatus AF084095 Sotalia fluviatilis AF304067Sotalia guianensis DQ086827Steno bredanensis AF084077Lissodelphis borealis AF084064Lagenorhynchus obliquidens AF084067 Lagenorhynchus obscurus AY257161Cephalorhynchus heavisidii AF084070 Cephalorhynchus eutropia AF084072Cephalorhynchus commersonii AF084073Cephalorhynchus hectori AF084071Lagenorhynchus australis AF084069Lagenorhynchus cruciger AF084068Lagenorhynchus albirostrisLagenorhynchus acutus AF084075Feresa attenuata AF084052Globicephala macrorhynchus AF084055Globicephala melas AF084056Grampus griseus AF084059Pseudorca crassidens AF084057Orcaella brevirostris AF084063Orcinus orca AF084061Phocoenoides dalli PDU09679Phocoena phocoena PPU72039Phocoena dioptrica ADU09681Phocoena spinipinnis PSU09676Phocoena sinus AF084051Neophocaena phocaenoides AF334489Monodon monoceros MMU72038Delphinapterus leucas DLU72037Lipotes vexillifer AF304071Inia geoffrensis geoffrensis AF334485Inia geoffrensis humboldtiana AF521110Inia geoffrensis boliviensis AF334487Pontoporia blainvillei AF334488Balaena mysticetusEubalaena japonicaEubalaena australisBalaena glacialis X75587Balaenoptera acutorostrataBalaenoptera bonaerensis X75581Balaenoptera musculusBalaenoptera borealis X75582Balaenoptera brydeiBalaenoptera edeni X75583Balaenoptera omuraiEschrichtius robustus X75585Balaenoptera physalusMegaptera novaeangliae X75584Caperea marginata X75586

Kogia breviceps KBU72040 Kogia simus AF304072Physeter catodon X75589Platanista gangetica AF304070 Platanista minor X92543Tasmacetus shepherdi AF334484Mesoplodon ginkgodens AY579544Mesoplodon europaeus X92537Mesoplodon bowdoini AY579536Mesoplodon traversii AY579556Mesoplodon stejnegeri AY579554Mesoplodon grayi AY579546Mesoplodon densirostris X92536Mesoplodon hectori AY228109 Mesoplodon bidens X92538Mesoplodon mirus AY579552Mesoplodon layardii AY579550Indopacetus pacificus AY162441 AY162442 Hyperoodon planifrons AY579559Hyperoodon ampullatus X92539Berardius bairdii X92541Berardius arnuxii AY579565Ziphius cavirostris AF304075 Stenella longirostris AF084103Sousa chinensis AF084080Stenella attenuata AF084096Lagenodelphis hosei AF084099 Delphinus capensis AF084087 Delphinus delphis AF084085 Delphinus tropicalis AF084088Stenella clymene AF084083Stenella coeruleoalba AF084082 Stenella frontalis AF084090Tursiops aduncus AF084091 Tursiops truncatus AF084095 Sotalia fluviatilis AF304067Sotalia guianensis DQ086827Steno bredanensis AF084077Lissodelphis borealis AF084064Lagenorhynchus obliquidens AF084067 Lagenorhynchus obscurus AY257161Cephalorhynchus heavisidii AF084070 Cephalorhynchus eutropia AF084072Cephalorhynchus commersonii AF084073Cephalorhynchus hectori AF084071Lagenorhynchus australis AF084069Lagenorhynchus cruciger AF084068Lagenorhynchus albirostrisLagenorhynchus acutus AF084075Feresa attenuata AF084052Globicephala macrorhynchus AF084055Globicephala melas AF084056Grampus griseus AF084059Pseudorca crassidens AF084057Orcaella brevirostris AF084063Orcinus orca AF084061Phocoenoides dalli PDU09679Phocoena phocoena PPU72039Phocoena dioptrica ADU09681Phocoena spinipinnis PSU09676Phocoena sinus AF084051Neophocaena phocaenoides AF334489Monodon monoceros MMU72038Delphinapterus leucas DLU72037Lipotes vexillifer AF304071Inia geoffrensis geoffrensis AF334485Inia geoffrensis humboldtiana AF521110Inia geoffrensis boliviensis AF334487Pontoporia blainvillei AF334488Balaena mysticetusEubalaena japonicaEubalaena australisBalaena glacialis X75587Balaenoptera acutorostrataBalaenoptera bonaerensis X75581Balaenoptera musculusBalaenoptera borealis X75582Balaenoptera brydeiBalaenoptera edeni X75583Balaenoptera omuraiEschrichtius robustus X75585Balaenoptera physalusMegaptera novaeangliae X75584Caperea marginata X75586

R can also read

in multiple trees at the same time. This is useful when you are working with output from
Bayesian analysis programs like BEAST or MrBayes

> lots.of.trees<-read.tree('Data/multiple_trees.phy')

10.6.2 Plotting Support Symbols on Trees

This example shows how you can take the consensus file from a MrBayes analysis and
visualize clade posterior probabilities in R (Thanks to Rich Glor at dechronization for
code).

> snakecon<-read.nexus('Data/consensus.tre')
> snakecon[[1]]->snakecon
> p <- character(length(snakecon$node.label))
> #The following three lines define your labeling scheme.
> p[snakecon$node.label >= 0.95] <- "black"
> p[snakecon$node.label < 0.95 & snakecon$node.label >= 0.75] <- "gray"

10.6. TREE INPUT AND OUTPUT 119

> p[snakecon$node.label < 0.75] <- "white"
> #Almost done, you're ready to plot your tree
> layout(matrix(1))
> plot(snakecon)
> #Now label your tree:'pch' tells R to use filled circles, 'cex' defines the size of the circles, and 'bg' tells it the name of the vector including the fill colors.
> nodelabels(pch=21, cex = .75, bg = p)

pareasBitia
Cantoria

Gerarda2 346
Fordonia leucobalia
FordoniaR22715

Erpeton252504Caustralis
Cmicrolepis
Crynchops32404

Crynchops497590
HomalopsisEbocourti252500

Epolylepis22716
Myron

Epunctata31710Echinensis31031
Eenhydris250119Einnominata65305
Elongicauda63732

Ejagorii252505EmatannensisIsk
Eplumbea31858
Enhydris plumbea 1

paddletailMicrus
dinodon

RhabdophisXvitta
Natrix maura

Heterodon simus

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

10.6.3 Writing Trees

Similarly, the write.tree() command will write a Newick representation of your tree
and write.nexus() produces a nexus version of it.

> write.tree(whale.phy, file ='new.phylip.tre')
> write.nexus(whale.phy, file ='new.nexus.tre')

120 CHAPTER 10. WORKING WITH TREES BY MICHAEL ALFARO

10.6.4 Manipulating Tree Labels and Branch Lengths

The edge.length attribute of the tree structure in R defines the branch lengths described
by the rows of the edge matrix we saw earlier. It is easy to modify the edge.length values.
Let’s look again at the geospiza example.

> layout(matrix(1:2, 2, 1))
> data(geospiza)
> tree<-geospiza$geospiza.tree
> tree$edge

[,1] [,2]
[1,] 15 16
[2,] 16 17
[3,] 17 18
[4,] 18 19
[5,] 19 20
[6,] 20 21
[7,] 21 22
[8,] 22 23
[9,] 23 24

[10,] 24 1
[11,] 24 2
[12,] 23 3
[13,] 22 4
[14,] 21 5
[15,] 20 6
[16,] 19 25
[17,] 25 7
[18,] 25 26
[19,] 26 27
[20,] 27 8
[21,] 27 9
[22,] 26 10
[23,] 18 11
[24,] 17 12
[25,] 16 13
[26,] 15 14

> tree$edge.length

[1] 0.29744 0.04924 0.06859 0.13404 0.10346 0.03550 0.00917 0.07333 0.05500
[10] 0.05500 0.05500 0.11000 0.18333 0.19250 0.22800 0.24479 0.08667 0.05167
[19] 0.01500 0.02000 0.02000 0.03500 0.46550 0.53409 0.58333 0.88077

10.6. TREE INPUT AND OUTPUT 121

> plot(tree)
> nodelabels()
> tiplabels()
> tree$edge.length[1]<-0.15
> tree$edge.width[1]<-2
> plot(tree)

fuliginosafortismagnirostrisconirostrisscandensdifficilispallidaparvuluspsittaculapauperPlatyspizafuscaPinaroloxiasolivacea15 1617
18

19
202122 23 24

252627

12
34
56
78
910
1112
1314

fuliginosafortismagnirostrisconirostrisscandensdifficilispallidaparvuluspsittaculapauperPlatyspizafuscaPinaroloxiasolivacea

We can set the length of a particular branch in the edge matrix (as we did here with
edge.length[1]<-0.15. We can also change all of the branch lengths at once.

> layout(1)
> tree$edge.length

[1] 0.15000 0.04924 0.06859 0.13404 0.10346 0.03550 0.00917 0.07333 0.05500
[10] 0.05500 0.05500 0.11000 0.18333 0.19250 0.22800 0.24479 0.08667 0.05167
[19] 0.01500 0.02000 0.02000 0.03500 0.46550 0.53409 0.58333 0.88077

122 CHAPTER 10. WORKING WITH TREES BY MICHAEL ALFARO

> tree$edge.length<-tree$edge.length + 1
> tree$edge.length

[1] 1.15000 1.04924 1.06859 1.13404 1.10346 1.03550 1.00917 1.07333 1.05500
[10] 1.05500 1.05500 1.11000 1.18333 1.19250 1.22800 1.24479 1.08667 1.05167
[19] 1.01500 1.02000 1.02000 1.03500 1.46550 1.53409 1.58333 1.88077

> plot(tree)

fuliginosa
fortis

magnirostris
conirostris

scandens
difficilis

pallida
parvulus
psittacula

pauper
Platyspiza

fusca
Pinaroloxias

olivacea

10.6.5 Miscellaneous Tree Commands

Once you have a tree in R, it is easy to get information about it. These commands show
some of what is possible–you can query whether a tree is ultrametric, find out how many
taxa are in it, or look at the distribution of branch lengths.

10.6. TREE INPUT AND OUTPUT 123

> data(geospiza)
> tree<-geospiza$geospiza.tree
> class(tree)

[1] "phylo"

> mean(tree$edge.length)

[1] 0.1764008

> hist(tree$edge.length)
> is.ultrametric(tree)

[1] TRUE

> tree$Nnode

[1] 13

> tree$tip.label

[1] "fuliginosa" "fortis" "magnirostris" "conirostris" "scandens"
[6] "difficilis" "pallida" "parvulus" "psittacula" "pauper"

[11] "Platyspiza" "fusca" "Pinaroloxias" "olivacea"

124 CHAPTER 10. WORKING WITH TREES BY MICHAEL ALFARO

Histogram of tree$edge.length

tree$edge.length

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Practice

1. Read one of your trees into R and save it as a pdf.

2. Set all the branch lengths in the geospiza tree to 1.

3. Make the tip labels of a clade on your tree red. Hint: use the tip.col option within
plot. This command will label 5 taxa red and 18 taxa blue: plot(your.tree,
tip.col = c(rep("red", 5), rep("blue", 18))).

Chapter 11

Ancestral State Reconstructions by
Graham Slater

Ancestral state reconstructions allow you to reconstruct the history of a trait along a
phylogeny. This is incredibly useful when trying to predict the ancestral state for a
trait or inferring polarity in character evolution. Plus, the make for some really cool
images when preparing manuscripts. Older methods based on parsimony resulted in
some quite ambiguous reconstructions. Fortunately we now have some neat likelihood
methods that can take additional phylogenetic information, such as branch lengths, into
account. These methods allow us to additionally infer rates of character evolution and
test di↵erent models of state changes. Let’s take a look at how this works in R. We’ll be
using the ace function in the ape package.

First we need a sample data set to work with. We’ll use the Geospiza data from the
geiger package:

> require(geiger)
> data(geospiza)
> tree<-geospiza$geospiza.tree
> data<-geospiza$geospiza.data
> nc<-name.check(tree,data)
> tree<-drop.tip(tree,nc[[1]])

the last two steps there checked that the names in the tree and data matched and dropped
any unrepresented taxa from the tree now we’ve matched up the names in the tree and
data, we’re ready to go. the ace function requires the data to be in a vector format, with
entries either in the same order as they are in the tree, or else with names assigned to
them (just like with PICs). We’ll create a vector for beak depth for this example

> beakD<-data[,4]
> names(beakD)<-rownames(data)

125

126CHAPTER 11. ANCESTRAL STATE RECONSTRUCTIONS BYGRAHAM SLATER

Now we’re ready to try some ancestral state reconstructions. We’ll begin by trying the
default options in the ace function. type...

> ace(beakD, tree)

Ancestral Character Estimation

Call: ace(x = beakD, phy = tree)

Log-likelihood: -1.180158

$ace
14 15 16 17 18 19 20 21

1.826695 1.850263 1.967723 2.087918 2.197687 2.264403 2.287339 2.380169
22 23 24 25

2.227995 2.047707 2.057914 2.054239

$sigma2
[1] 0.40589799 0.08289514

$CI95
[,1] [,2]

14 1.442009 2.211382
15 1.500153 2.200372
16 1.642478 2.292967
17 1.809334 2.366502
18 1.972721 2.422653
19 2.063233 2.465574
20 2.087948 2.486731
21 2.196500 2.563837
22 2.081668 2.374321
23 1.866770 2.228644
24 1.945915 2.169912
25 1.965992 2.142487

You’ll see that you got a list back with a series of elements:

loglik this is the maximum log-likelohood for the reconstruction - you’ll only get this
if you use the ML method

ace this is a vector of estimated ancestral states for the nodes in your tree

sigma2 this is the maximum likelihood estimate of sigma2 - the brownian rate

127

CI95 95% confidence limits for the node values. Notice that the CIs are quite wide,
especially for the basal nodes. This is expected - we have low power to estimate
ancestral states towards the base of the tree because, under BM, a wide range of
values are possible.

We can also save this output and visualize it, like this:

> asr<-ace(beakD,tree)
> plot(tree)
> nodelabels(pch=21,cex=asr$ace,bg="blue")

fuliginosa

fortis

magnirostris

conirostris

scandens

difficilis

pallida

parvulus

psittacula

pauper

Platyspiza

fusca

Pinaroloxias

●

●

●

●

●

●

●

●
●

●

●
●

This plots the ancestral state reconstructions on the nodes using circles of corresponding
size. If the circles are too small or the range is too big, you can adjust them by scaling
the size.

You can also add circles at the tips to show the range of observed values - you might
want to replot the tree and shift the tip labels a bit first using o↵set.

128CHAPTER 11. ANCESTRAL STATE RECONSTRUCTIONS BYGRAHAM SLATER

> plot(tree,label.offset=0.025)
> tiplabels(pch=21,cex=beakD,bg="blue")
> nodelabels(pch=21,cex=asr$ace,bg="blue")

Let’s take a look at the options in ace

> ?ace

Let’s look at the arguments that ace takes.

We see that we have two options for ”type” - continuous or discrete. We just used the
default option, continuous traits. We’ll look at discrete next. We also have options for
method: ”ML” (maximum likelihood, and the default option), ”pic” or ”GLS”. the last
two do exactly what they say they do: independent contrasts or generalized least squares.
We actually did ancsestral state reconstructons using these methods earlier when doing
contrasts and GLS, although we didn’t save or do anything with the reconstructions.
We’ll focus on ML here. ML is the default option for continuous traits, and the only
option for discrete ones. I should note here that the algorithm that ace uses optimizes all
node states simulataneously. This works well for small trees like the one we’re using here,
but can make errors with larger datasets. You might like to confirm that your inferred
states agree with those from another ancestral state function, getAncStates, in geiger.
The final thing I want you to note here is the model argument. For continuous traits, we
use BM. For discrete traits, we default to something called ”ER”, which stands for equal
rates in any direction of change (an MK1 model if you’ve tried this in MESQUITE).
There are other options and we’ll see those now.

Let’s get a discrete dataset together for the Geospiza tree. Here is diet coded from
Schluter et als 1997 paper in Evolution. Diet is coded as 0 = granivores, 1 = insecti-
vores and 2=folivores. The taxa in this dataset are slightly di↵erent from those in the
continuous dataset so we’ll need to make a new tree from the original.

> diet<-c(0,0,0,0,0,0,1,1,1,2,1)
> names(diet)<-c("fuliginosa","fortis","magnirostris","difficilis","conirostris","scandens","parvulus","pauper","pallida","Platyspiza","olivacea")
> tree2<-geospiza$geospiza.tree
> nc<-name.check(tree,diet)
> tree2<-drop.tip(tree2,nc[[1]])

Now we’ll try some discrete state reconstructions. Remember we need to specify that
we’re doing discrete characters. Let’s try the default options first

> asrD<-ace(diet,tree2,type="discrete")
> asrD

129

Ancestral Character Estimation

Call: ace(x = diet, phy = tree2, type = "discrete")

Log-likelihood: -5.794289

Rate index matrix:
0 1 2

0 . 1 1
1 1 . 1
2 1 1 .

Parameter estimates:
rate index estimate std-err

1 0.6073 0.3108

Scaled likelihoods at the root (type '...$lik.anc' to get them for all nodes):
0 1 2

0.3300753 0.4159415 0.2539831

Note that we saved the ace output here as asrD, so we have to type that in to get
the results displayed in the console. you’ll notice that the output of the discrete state
reconstruction is di↵erent to that for continuous traits. You still have a log-likelihood
but the other output looks a little di↵erent. Instead of sigma2, you have something called
”rates”. We used the default, equal rates (ER) model so we get one maximum likelihood
estimate of the rate. We also get a standard error (se) associated with that rate esimate.
index.matrix is a matrix showing which rate in rates corresponds to which transitions.
This will make more sense in a minute. We also get a list of ancestral state likelihoods
(lik.anc). Because we’re dealing with a discrete trait, we get likelihoods associated with
each state, rather than one esimated value. Note that each row (a node) sums to one.
This makes it convenient to represent these values visually.

> plot(tree2,label.offset=0.02)
> co <- c("blue", "yellow","red")
> tiplabels(pch = 21, bg = co[as.numeric(diet+1)], cex = 2) ## note we had to add one to co here as there is no zero in the color vector
> nodelabels(pie =asrD$lik.anc, piecol=co , cex =1)

You’ll note here again that we can estimate the states of higher nodes quite well but
uncertainty increases as we move toward the root We made an assumption above that
the rate of change from one state to another is the same, regardless of direction. We can
test that assumption. Remember how we used the default ER setting? Let’s try changing
that and using an asymmetric model, where the state of change in one direction di↵ers
from that going the other way (i.e. all rates are di↵erent).

130CHAPTER 11. ANCESTRAL STATE RECONSTRUCTIONS BYGRAHAM SLATER

> asrD2<-ace(diet,tree2,type="discrete",model="ARD")
> asrD2

Ancestral Character Estimation

Call: ace(x = diet, phy = tree2, type = "discrete", model = "ARD")

Log-likelihood: -5.505021

Rate index matrix:
0 1 2

0 . 3 5
1 1 . 6
2 2 4 .

Parameter estimates:
rate index estimate std-err

1 0.5550 0.9221
2 0.7390 1.9748
3 0.6737 0.8782
4 1.8559 3.0988
5 0.3124 0.7419
6 0.7447 1.2270

Scaled likelihoods at the root (type '...$lik.anc' to get them for all nodes):
0 1 2

0.2645695 0.3666062 0.3688243

Checking the results from this, you’ll see there are 6 di↵erent rates in asrD2$rates. These
correspond to the entries in index.matrix. rate 1 is the transition rate from state 2 to
state 1,2 is the rate from 3 to 1 and so on. You can try plotting the results as pie charts
using the code above. You will see that the di↵erences are marginal and mostly a↵ect
nodes towards the base of the tree. Lets also try another situation where transitions
between the same pair of states have the same rate but transitions between other states
are di↵erent.

> asrD3<-ace(diet,tree2,type="discrete",model="SYM")
> asrD3

Ancestral Character Estimation

Call: ace(x = diet, phy = tree2, type = "discrete", model = "SYM")

131

Log-likelihood: -5.723915

Rate index matrix:
0 1 2

0 . 1 2
1 1 . 3
2 2 3 .

Parameter estimates:
rate index estimate std-err

1 0.7169 0.6123
2 0.3299 0.5590
3 0.9428 1.2283

Scaled likelihoods at the root (type '...$lik.anc' to get them for all nodes):
0 1 2

0.3132024 0.4089024 0.2778952

Looking at the rates and index matrix, you’ll see that we now have 3 rates - 1 for a
transition between each pair of states. We’ve just used the 3 built-in transition matrices,
but you can invent your own - for example if you want to allow rates to all be the same
for transitions in one direction but di↵erent transitions in the other. You do this by
building a model matrix. For example, model=matrix(c(0,1,1,0),2). In this case we build
a 2x2 matrix where there is just one rate between the two states. Make sure that if you
use a custom transition matrix, that the number of rows and columns in your matrix
corresponds to the number of states your character can take.

Now we’ve tried the three built in matrices, how do we chose among the possible models
of trait evolution? Which one do your data fit best? We could use the log-likelihood
values - Bigger values imply better fits. You could get a P-value by computing likelhood
ratio tests with degrees of freedom = di↵erence in number of parameters. Alternatively
you could directly extract AIC scores for comparison. Let’s look at the log likelihood
scores first.

> list("ER"=asrD$loglik,"ARD"=asrD2$loglik,"SYM"=asrD3$loglik)

$ER
[1] -5.794289

$ARD
[1] -5.505021

132CHAPTER 11. ANCESTRAL STATE RECONSTRUCTIONS BYGRAHAM SLATER

$SYM
[1] -5.723915

Not that di↵erent are they? Based on these, it might be tempting to suggest that the ”All
Rates Di↵erent” model is best because its log-likelihood is the highest. But remember,
there are di↵erent numbers of parameters in these models and you want to penalize for
this. Likelihood ratio tests do this using degrees of freedom. Using a model-inference
approach, you can compute the AIC score like this:

> ER.AIC<-AIC(ace(diet,tree2,type="discrete"))
> ARD.AIC<-AIC(ace(diet,tree2,type="discrete",model="ARD"))
> SYM.AIC<-AIC(ace(diet,tree2,type="discrete",model="SYM"))
> list("ER"=ER.AIC,"ARD"=ARD.AIC,"SYM"=SYM.AIC)

$ER
[1] 13.58858

$ARD
[1] 23.01004

$SYM
[1] 17.44783

When using AIC, the model with the lowest AIC score is the one that the data fit best.
Here the ”Equal Rates”model is the best fit. The di↵erence between it and the symmetric
model is 4, which is the normal threshold taken as strong support for one model over
another. The ”All Rates Di↵erent” model is a poor fit to the data, probably because of
the large number of parameters. Because we have only 11 tips in the tree here, we should
probably have used a small-sample corrected AIC score. For bigger trees, AIC will be
fine.

Chapter 12

Verification: Computing
Phylogenetic GLS ”by hand”

Chapter Topics:

• Checking your computations by other means

• Deconstructing ape objects

Skills: accessing object elements, constructing similarity matrices, using R matrix math
functions, using R linear model functions.

A good practice is to try to verify the software you are using by doing things another way.
Phylo GLS is a good one because it is fairly simple mathematically. Recall the equation
(3.2). All we need to do is take our data and, using matrix math, divide by the square
root of the phylogenetic covariance matrix. Thus we need to do the following steps:

1. Compute the phylogenetic covariance matrix expected under BM. This is a ”simi-
larity” matrix based on the amount of time they share along the phylogeny. Let’s
call this tbm

2. Take the inverse of the matrix, tbmi.

3. Find the square root of tbmi, a good way to do this is by cholesky decomposition.

4. Multiply our data vectors by roottbmi to get our phylogenetically transformed
data.

5. Run regression analysis on the transformed data.

Let’s load our primate tree that we saved earlier:

133

134CHAPTER 12. VERIFICATION: COMPUTING PHYLOGENETIC GLS ”BY HAND”

> require(ape)
> require(nlme)
> load("Rdata/tree.primates.rda")
> tree <- tree.primates
> names(tree)

[1] "edge" "Nnode" "tip.label" "edge.length"

> tree$edge

[,1] [,2]
[1,] 6 7
[2,] 7 8
[3,] 8 9
[4,] 9 1
[5,] 9 2
[6,] 8 3
[7,] 7 4
[8,] 6 5

> tree$tip.label

[1] "Homo" "Pongo" "Macaca" "Ateles" "Galago"

Remember that the first column in the edge matrix is the ancestral node, and the second
column is the descendant node. If you think of the descendant node as the reference
point, then the tips are nodes 1-5, and the internal nodes are therefore 6-9. We can
assign the node.labels and plot them on the tree:

> tree$node.label <- c(6:9)
> plot(tree, show.node.label = TRUE)

135

Homo

Pongo

Macaca

Ateles

Galago

6

7

8

9

Let’s make a dataframe so that we can see the tree structure and associated metadata
more clearly. We’re using the function with, which defines a small local environment
where we are using the object tree.

Let’s cbind together the edge matrix, which describes the ancestor-descendant pairs,
with the appropriate branch lengths, and species and tip labels. Note that the edge
matrix doesn’t have a row for the most basal node in the tree as a descendant, so we
have to drop the first node label from our vector (otherwise the label vector will be too
long by one).

> with(tree, cbind(tree.primates$edge, edge.length, labels = c(node.label[-1],
+ tip.label)))

edge.length labels
[1,] "6" "7" "0.38" "7"
[2,] "7" "8" "0.13" "8"
[3,] "8" "9" "0.28" "9"
[4,] "9" "1" "0.21" "Homo"

136CHAPTER 12. VERIFICATION: COMPUTING PHYLOGENETIC GLS ”BY HAND”

[5,] "9" "2" "0.21" "Pongo"
[6,] "8" "3" "0.49" "Macaca"
[7,] "7" "4" "0.62" "Ateles"
[8,] "6" "5" "1" "Galago"

Since we need to calculate a similarity matrix based on time in shared evolutionary
history, it would actually be much more convenient to have for each node, the time from
the root to the node. Let’s call this ”times”. For a small and simple phylogeny, we can do
this by ”hand”. Looking at the dataframe we just made, we can add up the branches to
each node, with the base of the tree at time zero and the tips at time 1, and then remake
the matrix (again, we drop the basal node from this vector):

> times <- c(0, 0.38, 0.38 + 0.13, 0.38 + 0.13 + 0.28, 1, 1, 1,
+ 1, 1)
> with(tree, cbind(tree.primates$edge, edge.length, labels = c(node.label[-1],
+ tip.label), times = times[-1]))

edge.length labels times
[1,] "6" "7" "0.38" "7" "0.38"
[2,] "7" "8" "0.13" "8" "0.51"
[3,] "8" "9" "0.28" "9" "0.79"
[4,] "9" "1" "0.21" "Homo" "1"
[5,] "9" "2" "0.21" "Pongo" "1"
[6,] "8" "3" "0.49" "Macaca" "1"
[7,] "7" "4" "0.62" "Ateles" "1"
[8,] "6" "5" "1" "Galago" "1"

Looks good so far. Let’s plot these ”times”on the tree. Replace the node.label with times
values and replot:

> tree$node.label <- as.character(times[1:4])
> plot(tree, show.node.label = TRUE)

137

Homo

Pongo

Macaca

Ateles

Galago

0

0.38

0.51

0.79

Now, looking at the tree, let’s make our tbm matrix. First, make an empty matrix with
just species names to help us with a mental image of what we’re doing:

> tbm <- matrix(nrow = 5, ncol = 5)
> rownames(tbm) <- colnames(tbm) <- tree$tip.label
> tbm

Homo Pongo Macaca Ateles Galago
Homo NA NA NA NA NA
Pongo NA NA NA NA NA
Macaca NA NA NA NA NA
Ateles NA NA NA NA NA
Galago NA NA NA NA NA

Now look at the phylogeny and fill in the pairwise similarities by the amount of evolu-
tionary history they share:

138CHAPTER 12. VERIFICATION: COMPUTING PHYLOGENETIC GLS ”BY HAND”

> tbm[1,] <- c(1, 0.79, 0.51, 0.38, 0)
> tbm[2,] <- c(0.79, 1, 0.51, 0.38, 0)
> tbm[3,] <- c(0.51, 0.51, 1, 0.38, 0)
> tbm[4,] <- c(0.38, 0.38, 0.38, 1, 0)
> tbm[5,] <- c(rep(0, 4), 1)
> tbm

Homo Pongo Macaca Ateles Galago
Homo 1.00 0.79 0.51 0.38 0
Pongo 0.79 1.00 0.51 0.38 0
Macaca 0.51 0.51 1.00 0.38 0
Ateles 0.38 0.38 0.38 1.00 0
Galago 0.00 0.00 0.00 0.00 1

Of course, one could program an automated way to do this, but that would take a lot of
time and skill. But this is a verification, so we compute it by hand. Now we are ready to
begin transforming our data. First do the inversion and root of tbm using the solve()
and chol() functions, respectively. These are both part of the base package.

> tbmi <- solve(tbm)
> roottbmi <- chol(tbmi)

Now transform our data. For the regression model, we will also have to transform the
intercept, so we bind a column of 1’s with the X variable (independent variable in this
example) and make transformed variables Z and U. Note that matrix multiplication is
designated by %*% (Otherwise multiplication is element-by-element, the default in R) :

> Z <- roottbmi %*% Y
> U <- roottbmi %*% cbind(1, X)

(Feel free to look at any of these matrices we’re creating). Now we just have to run
the regression. Since the intercept term is inside the X matrix now, we do a regression
without an intercept (one is added automatically unless you say no). You can use either
lm or gls in this case because we don’t have to specify a correlation structure. Let’s
compare that with the phylogenetic GLS:

> summary(lm(Z ~ U - 1))

Call:
lm(formula = Z ~ U - 1)

139

Residuals:
Homo Pongo Macaca Ateles Galago

1.73621 -0.66358 0.03030 -0.48572 0.43733

Coefficients:
Estimate Std. Error t value Pr(>|t|)

U 2.5001 0.7755 3.224 0.0484 *
UX 0.4319 0.2865 1.508 0.2288

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.138 on 3 degrees of freedom
Multiple R-squared: 0.8746, Adjusted R-squared: 0.791
F-statistic: 10.46 on 2 and 3 DF, p-value: 0.04442

> XY <- data.frame(Y, X)
> summary(gls(Y ~ X, correlation = corBrownian(phy = tree.primates),
+ data = XY))

Generalized least squares fit by REML
Model: Y ~ X
Data: XY

AIC BIC logLik
17.48072 14.77656 -5.74036

Correlation Structure: corBrownian
Formula: ~1
Parameter estimate(s):

numeric(0)

Coefficients:
Value Std.Error t-value p-value

(Intercept) 2.5000672 0.7754516 3.224014 0.0484
X 0.4319328 0.2864904 1.507669 0.2288

Correlation:
(Intr)

X -0.437

Standardized residuals:
Homo Pongo Macaca Ateles Galago

0.4187373 -0.6395037 -0.1376075 -0.4269456 0.3844060
attr(,"std")

140CHAPTER 12. VERIFICATION: COMPUTING PHYLOGENETIC GLS ”BY HAND”

[1] 1.137666 1.137666 1.137666 1.137666 1.137666
attr(,"label")
[1] "Standardized residuals"

Residual standard error: 1.137666
Degrees of freedom: 5 total; 3 residual

> summary(lm(pic.Y ~ pic.X - 1))

Call:
lm(formula = pic.Y ~ pic.X - 1)

Residuals:
6 7 8 9

-0.55351 0.35263 0.03311 1.85770

Coefficients:
Estimate Std. Error t value Pr(>|t|)

pic.X 0.4319 0.2865 1.508 0.229

Residual standard error: 1.138 on 3 degrees of freedom
Multiple R-squared: 0.4311, Adjusted R-squared: 0.2414
F-statistic: 2.273 on 1 and 3 DF, p-value: 0.2288

and with the regression from PIC:

> pic.X <- pic(X, tree.primates)
> pic.Y <- pic(Y, tree.primates)
> summary(lm(pic.Y ~ pic.X - 1))

Call:
lm(formula = pic.Y ~ pic.X - 1)

Residuals:
6 7 8 9

-0.55351 0.35263 0.03311 1.85770

Coefficients:
Estimate Std. Error t value Pr(>|t|)

pic.X 0.4319 0.2865 1.508 0.229

Residual standard error: 1.138 on 3 degrees of freedom
Multiple R-squared: 0.4311, Adjusted R-squared: 0.2414
F-statistic: 2.273 on 1 and 3 DF, p-value: 0.2288

Chapter 13

Sweave

We are going to take a moment or two to learn a little LATEX and an R function called
Sweave. This may seem like a really painful idea, BUT, the payo↵ is really big. You may
have guessed, this is how Todd, Brian, and I produced this tutorial. Package developers
are now using Sweave to produce vingettes, small package tutorials that are actually
compiled with the package (you can see a list of all available vingettes on you computer
by typing vignette().

I use it routinely in data analysis, which evolves directly into manuscripts. Some publish-
ers accept manuscripts in LATEX and combined with BibTeX the reference management
tool, adding Sweave gives so much functionality that it is becoming increasingly popular.
The analysis becomes part of the document. Let’s take a little look.

13.1 The Notion of Reproducible Results

Sweave provides “literate programming” for R. This new idea (or movement) is really well
explained at Charlie Geyer’s website: http://www.stat.umn.edu/c̃harlie/Sweave

Let’s take a look at it now.

13.2 A bit about LATEX

At first, LATEXlooks a little scary. There are curly braces around everything. But all
you have to do is learn the bare basics. In TeXShop, take a look at the file in the
Rcomparative
misc folder called “small2e.tex”. It is one of the “o�cial” sample documents for LATEX.

Two elements are required in all LATEXdocuments:

141

http://www.stat.umn.edu/~charlie/Sweave

142 CHAPTER 13. SWEAVE

1. A document class. This can be article (most common), book, report, etc.

2. A begin document and end document line, which opens and closes the text that
will be displayed in the final document.

Additionally, these basics are very helpful:

1. Remember that some characters are special characters in LATEX. You can use them
in your document, but you must set them o↵ with an escape character — the
backslash. \& \$ \# \% _ \{ \} \^ \~

Just knowing these characters can save you a lot of aggravation.

2. Many formatting commands have the syntax backslash commandname{} surround-
ing the words
\section{ PUT SECTION NAME HERE }

Italics are indicated by
\emph{ WORD }

Bold:
\textbf{ WORD }

Many of these are in the Macros menu in TeXShop

3. Heirarchical arrangements are very natural. Just put a “sub” in front of section,
subsubsection for the next level, and so on. Works on emph as well.

4. Another common syntax is having begin and end tags for environments. For ex-
ample:

\begin{center}
... Figure, Table, Text, etc.
\end{center}

Will center whatever is between the tags.

\begin{itemize}
\item FIRST ITEM
\item SECOND ITEM

\end{itemize}

Will generate a bullet point list.

When you want to get fancier, there is an amazing wealth of possiblities for formatting
figures, tables, equations, etc. A very helpful source is the LATEXmanual on Wikibooks:
http://en.wikibooks.org/wiki/LaTeX.

http://en.wikibooks.org/wiki/LaTeX

13.3. SIMPLE SWEAVE 143

13.3 Simple Sweave

I wrote two Sweave demo files, both in the Rcomparative
misc folder: “SweaveSample.pdf” and a pared-down example “SweaveMinimalist.Rnw”.
Then I found Charlie Guyer’s exaple, which is much better “foo.Rnw”.

13.4 Sweave -> LaTeX

After looking at these Rnw documents, convert these examples to LATEXby running the
command from R:

> Sweave("foo.Rnw")

Alternatively, you can run Sweave from the terminal. Make sure you are in the same
directory as the document, then type

R CMD Sweave foo

13.5 LaTeX -> pdf

If the LATEXis generated free of error, you can generate a pdf from it by opening up the
.tex files in TeXShop (just double click on the .tex file). Click on “Typeset”. If you get
errors, clicking on the “Goto Error” button can be very helpful.

You can also do this step at the command line (Terminal):

latex foo
xdvi foo

Either way, if you have figures generated by R, you will see a bunch of pdfs and eps files
appear. These are the individual figures that get inserted into the document. There are
also auxiliary files.

13.6 Stangle

Another very convenient function is Stangle, which is a sort of opposite of Sweave. It
strips out all of the text content of the document, and produces a .R file from the code
chunks in the .Rnw document:

144 CHAPTER 13. SWEAVE

> Stangle("foo.Rnw")

The code chunks are numbered, which is very helpful when debugging your R code, as R
will halt and tell you which code chunk it failed at. It is also helpful for distributing the
code examples.

R CMD Stangle foo

13.7 Best Practices

Don’t write the entire Sweave document at once! Write one code chunk at a time and
check that it compiles cleanly. Go slow, especially at first. Once you get confident, you
can write a bit more.

DIvide and Conquer If you are finding debugging the R code frustrating when combined
with the LATEX, then try writing the R script first, then pasting it into the .Rnw document.

Include all your steps in the .Rnw file The point is to be able to go from start to finish,
reproducing the results. Make sure the starting point is clear. Sometimes, you may want
one .Rnw file to go from raw data to an R data file, then another one for the analysis
starting from the R data file. This is fine, of course. Just think it through and organize
in a logical and most simple manner.

Write clean code This will really sharpen your coding skills. Nothing will motivate you
like the prospect of releasing it to the world.

Write each bit of code once and only once If you want to run it again, label the code
chunk and call the code chunk next time. As your code evolves, you may end up changing
the code chunk, but you could easily forget to change all the copies. If it occurs only
once in your code, the single change will be propagated throughout the document:

<<label=twotwo>>=
2+2
@

<<>>=
<<twotwo>>=
@

13.8. EXERCISES 145

13.8 Exercises

Obviously... go write some Sweave documents! Start of slow and simple. It’s like riding
a bike. Shaky at first, but then it becomes second nature.

146 CHAPTER 13. SWEAVE

Chapter 14

S3 vs. S4 Objects

References:

• Freidrich Leisch’s lecture on S4 classes and methods

• Programming with Data: A guide to the S language, by John M. Chambers, 1998,
ISBN is 0-387-98503-4

phylobase and ouch are written in the newer S4 class system (the one which you’ve
been using and learning is the S3 class system). The main di↵erence between these two
systems is in the degree to which they follow the object-oriented programming model.

14.1 What is an object?

R works on objects:

• Objects are ways of bundling parts of programs into small, manageable pieces.

• Objects are simply a definition for a type of data to be stored

e.g., data vector, matrix, array, data frame, list, function

• An object is a component of a program that knows how to perform certain actions
and to interact with other pieces of the program.

• Functions can be described as ”black boxes” that take an input and spit out an
output. Objects can be thought of as ”smart” black boxes. That is, objects can
know how to do more than one specific task (method or behavior), and they can
store their own set of data.

147

http://www.ci.tuwien.ac.at/Conferences/useR-2004/Keynotes/Leisch.pdf
http://cm.bell-labs.com/cm/ms/departments/sia/Sbook/

148 CHAPTER 14. S3 VS. S4 OBJECTS

Table 14.1: Attributes of Hero characters.
Attribute Value
Health 16
Strength 12
Agility 14
WeaponType ”mace”
ArmorType ”leather”

Table 14.2: Behaviors or methods of Hero characters.
Methods
move through the maze
attack monsters
pick up treasure

• It is an abstraction: Objects are something that have attributes (values) and
behaviors (actions). These are sometimes called states and methods. These are
formally defined in the object definition.

14.2 Object example: A Medieval Video Game (re-
member Dungeons and dragons?)

We have two types of players: Monsters and Heros. For the hero character, we need
to store the values of certain attributes (Table ??).:

Heros must also be able to certain behaviors (which we will call methods:

These attributes and behaviors completely define the Hero. Modules may be written
that know how to interpret (interact with) heros.

14.3 S3 Classes

Similarly, S3 classes have attributes and methods. If we create a data.frame, we can ask
R what its attributes and methods available are:

> flies <- data.frame(species=c("melanogaster", "silvestris", "heteroneura"),
+ headW=c(3.5, 5, 12))
> attributes(flies)

$names
[1] "species" "headW"

14.3. S3 CLASSES 149

$row.names
[1] 1 2 3

$class
[1] "data.frame"

> methods(class="data.frame")

[1] [.data.frame [[.data.frame [[<-.data.frame
[4] [<-.data.frame $<-.data.frame aggregate.data.frame
[7] anyDuplicated.data.frame as.data.frame.data.frame as.list.data.frame

[10] as.matrix.data.frame by.data.frame cbind.data.frame
[13] dim.data.frame dimnames.data.frame dimnames<-.data.frame
[16] duplicated.data.frame edit.data.frame* format.data.frame
[19] formula.data.frame* head.data.frame* is.na.data.frame
[22] Math.data.frame mean.data.frame merge.data.frame
[25] na.exclude.data.frame* na.omit.data.frame* Ops.data.frame
[28] plot.data.frame* print.data.frame prompt.data.frame*
[31] rbind.data.frame row.names.data.frame row.names<-.data.frame
[34] rowsum.data.frame split.data.frame split<-.data.frame
[37] stack.data.frame* str.data.frame* subset.data.frame
[40] summary.data.frame Summary.data.frame t.data.frame
[43] tail.data.frame* transform.data.frame unique.data.frame
[46] unstack.data.frame* within.data.frame

Non-visible functions are asterisked

Programmers can write methods specifically for the classes that they define. For example,
let’s see what methods are available for class phylo objects from the ape package:

> require(ape)
> methods(class="phylo")

[1] +.phylo all.equal.phylo as.hclust.phylo
[4] as.matching.phylo coalescent.intervals.phylo cophenetic.phylo
[7] identify.phylo makeLabel.phylo plot.phylo

[10] print.phylo reorder.phylo skyline.phylo
[13] summary.phylo vcv.phylo

150 CHAPTER 14. S3 VS. S4 OBJECTS

14.3.1 No Validation

However, the S3 system also lacks features that object oriented languages often have,
mostly related to a less structured language definition. For users, problems can arise
when they accidentally make bad objects and crash their code. Under the S3 system, the
class of an object is simply assigned via the class attribute.

> tree <- "This is not a phylogenetic tree"
> class(tree) <- "phylo"
> attributes(tree)

$class
[1] "phylo"

There is no validation or checking that the objects have appropriate contents. R just
tries to do what it can with the crazy object. Worse things will happen if you try to plot
this fake tree.

14.3.2 Methods dispatch

One of the beauties of methods is that the user doesn’t have to worry about remembering
the package-specific name of the function they want to use. They just use familiar generics
such as plot, summary, and so on. The reason why this works is because of methods
dispatch. The function looks at the class of the object that is given as its argument,
and then it calls the correct function.

With S3 methods dispatch, however, it is rather clunky for programmers to write methods
for every variation of parameters. As a consequence, sometimes you get the wrong method
called. For example, here is something you may have experienced yourself. Take Fisher’s
famous iris dataset. You may have wanted a boxplot of some continuous character by
species, but instead gotten a scatterplot:

> data(iris)
> op <- par(no.readonly = TRUE)
> par(mfrow=c(1,2))
> with(iris, plot(Sepal.Length, Species))
> with(iris, plot(Species, Sepal.Length))
> par(op)

14.4. S4 CLASSES 151

●●●● ● ●● ●● ● ●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●●● ●●● ●●●● ●●● ●● ●●

●● ●● ●● ●● ●●● ●●●● ●●● ●● ●●●● ●●●●●●●● ●●● ● ●●●●● ●●● ●●● ●● ●

●● ●●● ●● ●● ●●● ●●● ●● ●●● ●● ●● ● ●●● ● ●● ●●●● ●●●● ●●●● ●●●●●●●

4.5 5.5 6.5 7.5

1.
0

1.
5

2.
0

2.
5

3.
0

Sepal.Length

Sp
ec
ie
s

●

setosa virginica

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

The plot method dispatched a scatter plot when the first argument was a continuous
variable, but dispatched a boxplot when the first argument was a factor. It is because R
is trying to figure out what you want based on the supplied arguments. In this case, it
is the first argument that determines the method, not the two arguments together.

14.4 S4 Classes

The S4 class system is considered to follow the principles of object oriented programming
because:

1. New objects of any class must be specifically created using the constructor function
new(). Programmers write a function to create new objects so that users never
have to make calls to new(). Part of this process is validation, a series of checks
that programmers write to make sure that object supplied by users are actually
valid for that class. For users, this is a very nice feature that will prevent errors
down the line which can be very confusing and di�cult to trace.

152 CHAPTER 14. S3 VS. S4 OBJECTS

2. Classes and methods can be inherited. This is mostly of benefit to programmers,
but it is of benefit to users as well because there is a good chance that methods for
one class of object can be used for related classes.

3. Programmers using S4 classes must write more consistent code, which makes it
easier to extend packages and build a more functional family of packages. This
consistency and predictability in the code makes it much easier for users to learn
new packages.

Currently, ouch and phylobase are written in S4, and ade4 will move to S4 in the next
revision. More packages will soon follow.

14.4.1 What are the di↵erences for users?

There are three main di↵erences for users. We will illustrate these with examples in the
next chapter on phylobase

1. Accessing help

2. Creating objects

3. Accessing internal elements of objects

Chapter 15

Phylobase

Some good starting points:

• vignette(’phylobase’)

• ?phylo4

phylobase is a package whose development was started at the recent NESCent Hackathon
on Comparative Methods in R. The hackathon was an event which brought programmers
and users together to discuss integration of packages, including methods for data ex-
change, interoperability, and usability.

One clear need for the growing number of comparative methods packages was a common
data format and utilities which would be useful for any comparative analysis.

15.1 Some Useful Features

tree input from Newick, Nexus, and other popular formats

coercion or translating from one package-specific format to another

combining trees with data functions to combine trees with data, matching on node
labels (species and node names), or node numbers.

treewalking functions to get the user-specified label for a node or the internally gen-
erated node number for ancestors, descendants, parents (all ancestors), or children
(all descendants), siblings (sister nodes), or MRCA (most recent common ancestor).

subsetting a very convenient function to select a subset of a phylogenetic object by
specifying tips, or a clade, or the MRCA.

tree plotting nice tree and tree+data plotting facilities.

153

154 CHAPTER 15. PHYLOBASE

15.2 Accessing help

S4 help pages can still be called using the ?topic syntax. In addition, there are some
new features. Let’s use a built-in example from phylobase:

> require(phylobase)
> data(geospiza)
> class(geospiza)

[1] "phylo4d"
attr(,"package")
[1] "phylobase"

We see that it is a phylo4d object. We can find out more about this class and the
methods available for it:

> class ? phylo4d # returns information on the class
> showMethods(class="phylo4d") # lists all methods available for phylo4d
> method ? plot("phylo4d") # the specific plot method for class phylo4d
> ? plot(geospiza) # also returns plot method for phylo4d

The last one, the question mark in front of the entire plot call, is particularly nice because
you don’t have to specify (or know) the class of the object. The help function will figure
it out.

15.3 Creating Objects

The basic objects in phylobase are the tree object called phylo4 and the tree+data object
called phylo4d. We can create new objects by calls to the phylo4() and phylo4d()
constructors.

The other way if you have an existing tree in ape format phylo, is to coerce it to phylo4d.
The standard way of doing this in S4 is to use the as(object, "newclass") function.

> load("Rdata/tree.primates.rda")
> tree4 <- as(tree.primates, "phylo4")

There are currently coercion functions to convert between phylobase phylo4 to phylo4d,
from phylobase to ape, from ape to phylobase, from phylobase to ade4, and from phy-
lobase to data.frame.

15.4. TREE AND DATA FORMATS 155

15.4 Tree and Data Formats

15.4.1 phylo4

We can see the structure of a phylo4 object simply by:

> attributes(tree4)

$edge
ancestor descendant

[1,] 6 7
[2,] 7 8
[3,] 8 9
[4,] 9 1
[5,] 9 2
[6,] 8 3
[7,] 7 4
[8,] 6 5

$edge.length
[1] 0.38 0.13 0.28 0.21 0.21 0.49 0.62 1.00

$Nnode
[1] 4

$tip.label
[1] "Homo" "Pongo" "Macaca" "Ateles" "Galago"

$node.label
[1] "N1" "N2" "N3" "N4"

$edge.label
[1] "E7" "E8" "E9" "E1" "E2" "E3" "E4" "E5"

$root.edge
[1] NA

$class
[1] "phylo4"
attr(,"package")
[1] "phylobase"

156 CHAPTER 15. PHYLOBASE

The structure is very similar to ape’s phylo format, upon which it was modeled. The
main features of importance to users is the edge matrix, the edge lengths, and the tip
labels. The edge matrix contains a column of ancestor nodes and a column of descendant
nodes. Together these define an ”edge”, and ”edge.length” is the branch length associated
with that particular edge. tip.label contains the species or taxon names for the terminal
taxa. The other labels are optional, but are generated automatically if none are user-
supplied.

The print and show methods for phylo objects show the tree as it would appear in data
frame format, to make it easier for users to verify the tree since all of the nodes, branch
lengths, and taxon names are lined up by row.

> tree4

label node ancestor branch.length node.type
1 N1 6 NA NA root
2 N2 7 6 0.38 internal
3 N3 8 7 0.13 internal
4 N4 9 8 0.28 internal
5 Homo 1 9 0.21 tip
6 Pongo 2 9 0.21 tip
7 Macaca 3 8 0.49 tip
8 Ateles 4 7 0.62 tip
9 Galago 5 6 1.00 tip

15.4.2 phylo4d

The phylo4d format adds a data frame which contains the phenotypic data. The data
are actually stored as two data frames, one for tip.data and one for node.data (typically
NULL, but put in place for future use as a means for incorporating fossil data). Let’s do
an example:

1. Make a dataframe of morphological data to match the primate tree

2. Name the rows with the tip.label (species names)

3. Use the phylo4d constructor to bind the tree and data together

> morph <- data.frame(row.names=labels(tree4), mass=rnorm(nTips(tree4),
+ mean=30, sd=10), femur=rnorm(nTips(tree4), mean=10, sd=5))
> tree4d <- phylo4d(tree4, tip.data=morph)
> tree4d

15.4. TREE AND DATA FORMATS 157

label node ancestor branch.length node.type mass femur
1 N1 6 NA NA root NA NA
2 N2 7 6 0.38 internal NA NA
3 N3 8 7 0.13 internal NA NA
4 N4 9 8 0.28 internal NA NA
5 Homo 1 9 0.21 tip 29.36089 4.3744618
6 Pongo 2 9 0.21 tip 33.60660 -0.1852925
7 Macaca 3 8 0.49 tip 25.06429 12.4575003
8 Ateles 4 7 0.62 tip 21.87775 8.5941291
9 Galago 5 6 1.00 tip 30.40994 9.1082989

phylo4d objects are plotted in the same way as phylo4, but we can also add a bubble
plot to indicate quantitative data.

> plot(tree4d)
> title("Phylo4d (tree + data) plot with default options")

N1

N2

N3

N4

●

●

●

●

●

●

m
as
s

fe
m
ur

Homo

Pongo

Macaca

Ateles

Galago

−1.5 −1 1 1.5
●●

Phylo4d (tree + data) plot with default options

158 CHAPTER 15. PHYLOBASE

There are many options which you can change to customize your plot. Type ?plot(tree4d)
to see the help page.

> plot(tree4d, center=F, scale=F, show.node.label=F, grid=F, ratio.tree=2/3, box=F)
> title("Phylo4d (tree + data) plot with customized options")

●

●

●

●
m
as
s

fe
m
ur

Homo

Pongo

Macaca

Ateles

Galago

20 25 30 35
●

Phylo4d (tree + data) plot with customized options

The phylo4d constructor also works directly from ape’s phylo trees:

> phylo4d(tree.primates, tip.data=morph)

label node ancestor branch.length node.type mass femur
1 N1 6 NA NA root NA NA
2 N2 7 6 0.38 internal NA NA
3 N3 8 7 0.13 internal NA NA
4 N4 9 8 0.28 internal NA NA
5 Homo 1 9 0.21 tip 29.36089 4.3744618
6 Pongo 2 9 0.21 tip 33.60660 -0.1852925

15.5. ACCESSING INTERNAL ELEMENTS OF S4 OBJECTS 159

7 Macaca 3 8 0.49 tip 25.06429 12.4575003
8 Ateles 4 7 0.62 tip 21.87775 8.5941291
9 Galago 5 6 1.00 tip 30.40994 9.1082989

We can extract the data back from the phylo4d object using the tdata function:

> tdata(tree4d)

mass femur
Homo 29.36089 4.3744618
Pongo 33.60660 -0.1852925
Macaca 25.06429 12.4575003
Ateles 21.87775 8.5941291
Galago 30.40994 9.1082989

15.5 Accessing Internal Elements of S4 Objects

S4 classes are actually intended so that users do not need to know the internal structure of
S4 objects. Rather, the programmer provides ”accessor” functions to get at the data that
users want. This is part of the concept of ”abstraction”. The reason behind distancing
the user from the actual data object is so that developers can be free to change or modify
the data structures without destroying the entire package, and breaking all the code that
users have developed for their personal analyses. It is actually quite liberating and allows
for greater flexibility for continued improvement after the initial design.

Accessor functions for phylobase include the following. A complete list is available by
accessing the help for any of these individual functions (i.e., ?nTips).

> nTips(tree4) # the number of terminal taxa

[1] 5

> labels(tree4) # tip (species) labels

[1] "Homo" "Pongo" "Macaca" "Ateles" "Galago"

> nNodes(tree4) # number of internal nodes

[1] 4

160 CHAPTER 15. PHYLOBASE

However, if you really want to access an internal element directly, the $ operator which
works for data frames and lists doesn’t generally work for S4 objects (it actually works
for phylo4 objects because the developers wrote translation functions for them). Instead,
internal elements are accessed using the @ symbol. Usually, though, this is reserved for
”internal” programming, such as coding the accessor functions.

15.6 Subsetting

Phylobase has a number of nice subsetting features. They extract portions of phylogenetic
trees and their associated data. The subset can be specified by a vector of tips to include
or exclude, or the most recent common ancestor of a group of nodes. We can also extract
a subtree of a given node.

For this example, let’s use a larger phylogeny of squamates (lizards). We plot without
tip labels because there are just too many taxa.

> tree4 <- NexusToPhylo4("Data/squamatetree1.nex")
> plot(tree4, show.tip.label=F)

15.6. SUBSETTING 161

Let’s prune the tree to the MRCA of Wetmorena haetiana and Abronia graminea. To
show test the subsetting on phylo4d objects, let’s make up some data and bind it to the
tree:

> smalltree4 <- subset(tree4, mrca=c("Wetmorena_haetiana", "Abronia_graminea"))
> smalltree4d <- phylo4d(smalltree4, tip.data=data.frame(
+ size=rnorm(nTips(smalltree4), mean=85, sd=25), row.names=labels(smalltree4)))
> plot(smalltree4d, center=F, scale=F, show.node.label=F, grid=F, ratio.tree=.6,
+ box=F, cex.symbol=.5, cex.label=.8)

162 CHAPTER 15. PHYLOBASE

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

si
ze

Abronia_graminea
Mesaspis_moreleti
Gerrhonotus_liocephalus
Barisia_imbricata
Elgaria_coerulea
Elgaria_kingii
Elgaria_multicarinata
Elgaria_panamintina
Elgaria_paucicarinata
Anguis_fragilis
Ophisaurus_apodus
Ophisaurus_attenuatus
Ophisaurus_ventralis
Ophisaurus_harti
Ophisaurus_koellikeri
Anniella_geronimensis
Anniella_pulchra
Celestus_enneagrammus
Diploglossus_bilobatus
Diploglossus_pleei
Ophiodes_striatus
Sauresia_agasepsoides
Wetmorena_haetiana

20 40 120 140

● ● ● ●

We had to reduce the bubble cex.symbol and text cex.label sizes to fit the space for
the plot.

Suppose we were only interested in plotting the genera Diploglossus, Ophisaurus, and
Elgaria. We can combine this with the grep function which matches patterns in strings
(i.e., it does partial matching).

> include <- c(grep("Ophisaurus", labels(smalltree4), value=T),
+ grep("Diploglossus", labels(smalltree4), value=T),
+ grep("Elgaria", labels(smalltree4), value=T))
> include

[1] "Ophisaurus_apodus" "Ophisaurus_attenuatus"
[3] "Ophisaurus_ventralis" "Ophisaurus_harti"
[5] "Ophisaurus_koellikeri" "Diploglossus_bilobatus"
[7] "Diploglossus_pleei" "Elgaria_coerulea"
[9] "Elgaria_kingii" "Elgaria_multicarinata"

[11] "Elgaria_panamintina" "Elgaria_paucicarinata"

15.6. SUBSETTING 163

> smalltree4d <- subset(smalltree4d, tips.include=include)

This time, let’s also remove the underscore from the names by using the sub function
(related to grep):

> labels(smalltree4d) <- sub("_", " ", labels(smalltree4d))
> labels(smalltree4) <- sub("_", " ", labels(smalltree4))
> plot(smalltree4d, center=F, scale=F, show.node.label=F, grid=F, ratio.tree=.6,
+ box=F, cex.symbol=.5, cex.label=.8)

●

●

●

●

●

●

●

●

●

●

●

●
si
ze

Elgaria coerulea

Elgaria kingii

Elgaria multicarinata

Elgaria panamintina

Elgaria paucicarinata

Ophisaurus apodus

Ophisaurus attenuatus

Ophisaurus ventralis

Ophisaurus harti

Ophisaurus koellikeri

Diploglossus bilobatus

Diploglossus pleei

20 40 120 140

● ● ● ●

We can also subset by using node numbers or species names (in quotes) with the square
bracket operator. These are all equivalent:

> smalltree4d[1:3] # tips to include
> smalltree4d[-(4:23)] # tips to exclude
> smalltree4d[c("Elgaria coerulea", "Elgaria kingii", "Elgaria multicarinata")]
> inc <- c("Elgaria coerulea", "Elgaria kingii", "Elgaria multicarinata")
> smalltree4d[inc]

164 CHAPTER 15. PHYLOBASE

Note: Trees often have taxon labels with underscores. ape plots underscores as blank in
text fields by default.

Ape does not currently have tree+data objects, and phylobase does not have actual
comparative methods functions such as independent contrasts. But it can still be useful
to bind the data to the tree, perform tree manipulations, and export the tree and data
formats (in the proper order) to ape objects. Future developments should bring increased
functionality.

> tree.ape <- as(smalltree4d, "phylo")
> tree.ape.dat <- tdata(smalltree4d)

15.7 Treewalking

Other ways to get descendants (immediate or all) or ancestors and subtrees is by using
the treewalking functions. Find help by typing ?ancestors.

The which parameter in ancestors specifies whether to return just direct ancestor (”par-
ent”) or ”all” ancestor nodes; in descendants, specify whether to return just direct de-
scendants (”children”), all extant descendants (”tips”), or all descendant nodes (”all”).

> tree4 <- as(tree.primates, "phylo4")
> plot(tree4, show.node.label=T)

15.7. TREEWALKING 165

Homo

Pongo

Macaca

Ateles

Galago

N1

N2

N3

N4

Suppose we wanted to label the node leading to Pongo and Homo with the word ”apes”.
There are several ways we could access the node in question:

> mm <- MRCA(tree4, c("Homo", "Pongo"))
> mm

N4
9

> ancestor(tree4, "Homo")

N4
9

Now we find which node label we want, replace that label, erase the rest, and plot:

166 CHAPTER 15. PHYLOBASE

> ii <- which(nodeLabels(tree4)==names(mm))
> nodeLabels(tree4)[-ii] <- ""
> nodeLabels(tree4)[ii] <- "Great Apes"
> plot(tree4, show.node.label=T)

Finally, getnodes is a handy function to identify the number of the node if you have the
label, or vice versa.

> getnodes(tree4, "Great Apes")
> getnodes(tree4, 9)

15.8 Example: Generating a set of trees with simu-
lated branch lengths

Suppose we wanted to test the robustness of our conclusions on error in the branch
length estimates for our tree. But how to generate the branch lengths? We come up
with two ideas: (1) Draw branch lengths from a probability distribution, say the normal
distribution with mean and standard deviation from the observed branch lengths. What
this procedure implies is that each branch length is an identical draw from the same
distribution (as if the branching events result from a single uniform process, although
with noise). This is not particularly biologically reasonable, but it is something we can
do. (2) Assume that the branch lengths are reasonable estimates of the times between
branching events, but they are sampled with some error. This implies that if the process
were repeated many times, you each particular branch would have its own mean. All we
have to estimate this mean is the observed branch itself, so let’s take it as our estimate.
We have no information on the standard deviation, so let’s try a common standard
deviation of 1/4 of the grand mean. (3) Of course, if we have a series of branch length
estimates (say from PAUP or other phylogeny estimation program), we could simply try
that. But for demonstration purposes, let’s try (1) and (2)

15.8.1 Branch lengths drawn from a common distribution

Using the primate tree from above, we generate a set of branch lengths, using the phylo4
accessors to get the information from the tree

> bl <- rnorm(nEdges(tree4), mean=mean(edgeLength(tree4)), sd=sd(edgeLength(tree4)))
> bl

[1] 0.6463380 0.3569145 0.4500820 0.4814310 0.4783944 0.0474164
[7] 0.6601589 0.3555261

15.8. EXAMPLE: GENERATING A SET OF TREESWITH SIMULATED BRANCH LENGTHS167

One problem that you may see is that it is very possible (in fact easy) to get negative
branch lengths. One solution is to simply discard those sets of bl that have negatives.
One could also take the absolute value (reflect the negatives) or set them to zero. Any of
these solutions will change the distribution (the latter two making it either a reflective
or an absorbing boundary), but the first option seems to be the least damaging.

> while(any(bl < 0)) bl <- rnorm(nEdges(tree4), mean=mean(edgeLength(tree4)),
+ sd=sd(edgeLength(tree4)))

Now we need to make a new tree with the phylo4 constructor. For clarity in this example,
lets first save the information from tree4 into separate variables:

> nodes <- edges(tree4)
> species <- labels(tree4)
> tr <- phylo4(edge=nodes, edge.length=bl, tip.label=species)
> plot(tr)

Homo

Pongo

Macaca

Ateles

Galago

168 CHAPTER 15. PHYLOBASE

We could make this into functions, especially if we were planning on using it in other
code. We have two tasks here (1) generating the branch lengths, and (2) making the
trees with the new branch lengths, so let’s make two functions:

> gen.bl <- function(tt) {
+ bl <- -1
+ while(any(bl < 0)) bl <- rnorm(nEdges(tt), mean=mean(edgeLength(tt)),
+ sd=sd(edgeLength(tt)))
+ }
> change.bl <- function (tt, bl) {
+ nodes <- edges(tt)
+ species <- labels(tt)
+ return(phylo4(edge=nodes, edge.length=bl, tip.label=species))
+ }
> branchlengths <- gen.bl(tree4)
> simtree <- change.bl(tree4, branchlengths)
> plot(simtree)

Homo

Pongo

Macaca

Ateles

Galago

15.8. EXAMPLE: GENERATING A SET OF TREESWITH SIMULATED BRANCH LENGTHS169

Voila! You can now create as many trees with weird branch lengths as you like. Just
rerun the calls to gen.bl and change.bl. For example, if you wanted to generate a list
of 9 trees, you could use a loop. First you must initialize the output tree list (or else you
will get an error when you try to save a value to an element of the list in the loop):

> simtrees <- vector(mode='list')
> for (i in 1:9) {
+ bl <- gen.bl(tree4)
+ simtrees[[i]] <- change.bl(tree4, bl)
+ }

Another strategy which is often very useful for data analysis is to use apply functions
to generate a list of trees, each with randomized branch lengths. The function can be
embedded in the apply call. Since we want to generate a list and will input a list of
branch lengths, let’s use lapply.

> # generate the list of branch lengths
> bls <- lapply(1:9, function(x) gen.bl(tree4))
> # generate the trees with the new branch lengths
> simtrees2 <- lapply(bls, function(x) {
+ return(phylo4(edge=edges(tree4), edge.length=x, tip.label=labels(tree4)))
+
+ })

We can plot the first nine of our crazy trees (the ll <- is just a kludge to supress output
from the lapply):

> op <- par(no.readonly = TRUE)
> par(mfrow=c(3,3))
> ll <- lapply(simtrees2, plot)
> par(op)

170 CHAPTER 15. PHYLOBASE

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

15.8.2 Branch lengths drawn from normal distributions with
separate means

The key di↵erence between these two options is the generation of the branch lengths.
So all we need to do is change the gen.bl function. Now instead of eight draws from
the same distribution, for each tree, we want a single draw from eight distributions (one
for each branch). We will assume that they are normal distributions with mean at the
observed branch lengths, and standard deviations arbitrarily chosen as 25% of the mean
of the observed branch lengths, which turns out to be approximately 0.1. We also change
the input from the whole tree (a phylo4 object) to a vector of branch lengths:

We will use the sapply function because we want to use rnorm once for each branch:

> bl.stan.dev <- mean(edgeLength(tree4))*.25
> gen.bl <- function(bl, blsd) {
+ bl <- sapply(bl, function(x) rnorm(1, mean=x, sd=blsd))
+ while(any(bl < 0)) bl <- sapply(bl, function(x) rnorm(1, mean=x, sd=blsd))

15.8. EXAMPLE: GENERATING A SET OF TREESWITH SIMULATED BRANCH LENGTHS171

+ return(bl)
+ }

We can reuse the function change.bl that we wrote previously, substitute our new branch
length generating function and plot our new tree:

> plot(change.bl(tree4, gen.bl(edgeLength(tree4), bl.stan.dev)))

Homo

Pongo

Macaca

Ateles

Galago

Let’s redo our nine trees:

> # generate the list of branch lengths
> bls <- lapply(1:9, function(x) gen.bl(edgeLength(tree4), bl.stan.dev))
> # reuse our lapply code
> simtrees3 <- lapply(bls, function(x) {
+ return(phylo4(edge=edges(tree4), edge.length=x, tip.label=labels(tree4)))
+ })
> op <- par(no.readonly = TRUE)

172 CHAPTER 15. PHYLOBASE

> par(mfrow=c(3,3))
> ll <- lapply(simtrees3, plot)
> par(op)

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

You can see that the two methods of generating branch lengths generate di↵erent shapes
of trees, especially depending on the magnitude of the standard deviation you allow
the second method to have. In the former case, it is di�cult to relate the simulated
branch lengths as reflective of time (or another way to think about this is that implicitly
assumes we have no idea when branching events occurred, but the timing between them
are assumed equal with some variance). In the latter case, it could be interpreted as
an assumption that our observed branch lengths reflect time, but there is variance or
measurement error in estimating the branch lengths.

In either case, you can now easily export these trees to ape to use in comparative analyses.
Suppose we needed to use a comparative method that required ultrametric trees. Use
the chronogram

> require(ape)

15.8. EXAMPLE: GENERATING A SET OF TREESWITH SIMULATED BRANCH LENGTHS173

> simtrees3.ape <- lapply(simtrees3, as, "phylo") # coerce to phylo:
> #same as nine calls to as(simtrees[[1]], "phylo")
> ultra3.ape <- lapply(simtrees3.ape, chronogram) # make the trees ultrametric
> op <- par(no.readonly = TRUE)
> par(mfrow=c(3,3))
> ll <- lapply(ultra3.ape, plot) # plot the nine trees
> par(op) # reset to default plot parameters

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

Homo

Pongo

Macaca

Ateles

Galago

174 CHAPTER 15. PHYLOBASE

Chapter 16

Stochastic Simulations

Let’s make some graphical animations to illustrate the BM and OU model.

16.1 Brownian motion model

Recall that we described a Brownian motion process using the following equation:

dX(t) = � dB(t). (16.1)

This equation says that the value of X in some small interval in time by an amount �

times a draw from a normal distribution. We can mimic this behavior by a simulation in
discrete time:

> nsteps = 100 # number of steps in our simulation
> devs =rnorm(nsteps) # 100 draws from a normal distribution

> x <- c(0:100)
> for (i in 1:nsteps)
+ {
+ x[i+1] <- x[i] + devs[i]
+ }

> x

[1] 0.0000000 0.1398150 -0.9129790 -1.0606427 -2.2525884 -4.6723994
[7] -5.2284680 -4.1715896 -4.6292394 -3.2756350 -3.4841759 -1.7542901

[13] -1.0170635 -2.5631703 -3.3620044 -2.7222800 -1.4698245 -3.2159180

175

176 CHAPTER 16. STOCHASTIC SIMULATIONS

[19] -3.3172463 -3.2997350 -2.7618601 -2.2288675 -1.2121975 -4.1983719
[25] -2.6316545 -0.2411552 -0.2740777 -0.8952370 -1.3863338 -1.7818611
[31] -1.1894663 -1.9055268 -2.7520503 -2.5360662 -3.6123742 -3.5832260
[37] -2.7873807 -1.2955992 -1.1005614 -1.6435168 -2.0445420 -4.1914657
[43] -4.3461264 -3.8795727 -3.7019795 -4.1371830 -4.1151274 -4.4752891
[49] -5.1085778 -3.2530366 -4.0491956 -4.7932082 -4.4860720 -4.3282460
[55] -3.3647450 -2.1359339 -0.6151603 0.7838015 1.1423835 2.8347385
[61] 2.9387732 2.0933772 1.7653739 2.3192160 2.4614209 2.0293380
[67] 3.1288531 2.0496851 2.4685896 2.0939789 2.3612080 2.8136793
[73] 1.9271181 1.2493612 2.4380965 1.8877843 1.3367051 -0.3797799
[79] -0.8989621 -2.9412598 -2.4049521 -3.7088834 -5.4439704 -6.7582157
[85] -6.7754452 -7.8426826 -8.1360784 -6.8419380 -7.2002330 -9.5248951
[91] -9.6562674 -10.3370857 -10.2506347 -10.5026172 -10.6147336 -10.0468655
[97] -10.3139792 -9.7870474 -9.9488377 -8.9038718 -9.3426409

We can plot this single random walk:

> plot(1:length(devs), devs, type = "n", col="red",
+ ylim = c(-max(devs)*30, max(devs)*30),
+ xlab="Time", ylab="Value", main="BM Simulation")
> x <- c(0:100)
> for (i in 1:nsteps)
+ {
+ x[i+1] <- x[i] + devs[i]
+ lines(i:(i+1), x[i:(i+1)], col="red")
+ }

In order to do 100 random walks, we need to place an outer loop, once for each random
walk:

> bm.plot.slow <- function(sigma=1, nsteps=100, nlineages=100, yylim=c(-50, 50))
+ {
+ plot(1:length(devs), devs, type = "n", col="red",
+ ylim = c(-max(devs)*30, max(devs)*30),
+ xlab="Time", ylab="Value", main="BM Simulation")
+
+ for (i in 1:nlineages) # number of lineages to simulate
+ {
+ x <- c(0:100)
+ devs =rnorm(nsteps) # 100 draws from a normal distribution
+ for (i in 1:nsteps)
+ {
+ x[i+1] <- x[i] + sigma*devs[i] # BM equation

16.1. BROWNIAN MOTION MODEL 177

+ # step through time, increasing x a little bit each time
+ lines(i:(i+1), x[i:(i+1)], col="red") # plot line segment
+ }
+ }
+ }

The loop is easier to understand in terms of a stochastic process, but actually we can
write this code much more compactly:

Adding up a series of BM steps using the cumulative sum function:

> sigma=1
> cumsum(rnorm(nsteps, sd=sigma))

Plotting all the line segments at once:

> y <- c(0, cumsum(rnorm(nsteps, sd=sigma)))
> lines(0:nsteps, y)

Or even more compactly:

> sigma=1
> lines(0:nsteps, c(0, cumsum(rnorm(nsteps, sd=sigma))))

And doing all of the lineages using lapply:

> bm.plot <- function(sigma=1, nsteps=100, nlineages=100, yylim=c(-50, 50))
+ {
+ # Set up plotting environment
+ plot(0, 0, type = "n", xlab = "Time", ylab = "Trait",
+ xlim=c(0, nsteps), ylim=yylim)
+
+ # Draw random deviates and plot
+ lapply(1:nlineages, function(x)
+ lines(0:nsteps, c(0, cumsum(rnorm(nsteps, sd=sigma)))))
+ }

If you want to show the simulations to screen, then you may actually prefer to do the
slower for-loops, as the lapply is too fast.

178 CHAPTER 16. STOCHASTIC SIMULATIONS

16.2 Exercises

1. Go back to bm.sim.slow and modify it to an OU. Recall the OU equation:

dX(t) = ↵ (✓ �X(t)) dt+ � dB(t). (16.2)

Hint: You will need to make two new parameters.

2. Introduce a branch to either the BM or simulation. You will need to simulate a
single lineage for half the time, then two lineages for the rest of the time.

16.3 Making movies

In order to make a movie of the plot, you will need to save a series of plots as separate
graphics files, similar to the ”flip-books” you played with as a child. You need to make a
plot with the first lineage, then the first two lineages, then the first three lineages, and
so on.

So it would make sense to make a matrix to store the lineages, then plot through cumu-
latively:

> nsteps=100
> nlineages=30
> sigma=1
> sims <- sapply(1:nlineages, function(x) c(0, cumsum(rnorm(nsteps, sd=sigma))))
> yylim <- c(-30, 30)
> png(filename="movies/Rplot%03d.png")
> # turn on png graphical device (write to file)
> for (i in 2:nlineages)
+ {
+ plot(0, 0, type = "n", xlab = "Time", ylab = "Trait",
+ xlim=c(0, nsteps), ylim=yylim)
+ apply(sims[,1:i], 2 , function(x) lines(0:nsteps, x, col="red"))
+ }
> dev.off() # turn off png

Then in a terminal, move into the movies directory. If you have imagemagik installed:

convert -delay 10 Rplot.png Rplot.gif

To make a .mov file, you can use Quicktime Pro (but you have to pay for the Pro upgrade).
In R version 2.8 there is a new package named animation which calls ImageMagick from
R. It was sort of touch-and-go on my Mac under R 2.7.

16.4. RGL GRAPHICS 179

16.4 RGL graphics

The 3D animations that I showed were produced using the package rgl. Unfortuantely,
there is a bug that is currently being fixed right now so I cannot demonstrate it for you.
It is a bug on the mac platform.

You can see the graph gallery at http://rgl.neoscientists.org/gallery.shtml. I
have also included my source code in the webdav. Under ou2drgl.R.

http://rgl.neoscientists.org/gallery.shtml

180 CHAPTER 16. STOCHASTIC SIMULATIONS

Chapter 17

Introduction to OU Models

Goals:

• Approaches for adaptive evolution (ouch, slouch, others)

• Model-based vs statistical approaches

Concepts:

• Model comparison tools in R

• Process-based models

17.1 The OU Model for Comparative Analysis

Recall that we described a Brownian motion process using the following equation:

dX(t) = � dB(t). (17.1)

If we imagine the phenotype X as changing through time t, this equation says that in a
small increment of time, the change will be proportional to the parameter �. Here, dB(t)
is a sample from a Brownian (white noise) process.

A small step towards reality is the OU Process:

dX(t) = ↵ (✓ �X(t)) dt+ � dB(t). (17.2)

Eq. 17.2 expresses the amount of change in character X over the course of a small
increment of time: specifically, dX(t) is the infinitesimal change in the character X over

181

182 CHAPTER 17. INTRODUCTION TO OU MODELS

the infinitesimal interval from time t to time t + dt. The term dB(t) is “white noise”;
that is, the random variables dB(t) are independent and identically-distributed normal
random variables, each with mean zero and variance dt. The parameter ↵ measures the
strength of selection. When ↵ = 0, the deterministic part of the OU model drops out
and (17.2) collapses to the familiar BM model of pure drift,

17.2 Introduction to Likelihood

17.3 ouch

See ouch lecture.

Good starting points:

?bimac help page for Bimaculatus character displacement dataset

example(bimac) example of bimac analysis

?anolis.ssd help page for Anolis sexual size dimorphism dataset

ouch is a package designed to test adaptive hypotheses using variations of the OU process,
including BM. OUCH implements a model that fits an alpha and sigma parameters to
the entire phylogeny, but allows the user to specify which branches belong to di↵erent
selective regimes. The location of the optima are also fit.

17.3.1 The Data

The data in OUCH are most easily assembled as a data frame. Load the built in example
from ouch and then print it to the screen (I only printed the head of the dataset here):

> require(ouch)
> data(bimac)
> bimac

node species size ancestor time OU.1 OU.3 OU.4 OU.LP
1 1 <NA> NA NA 0 ns medium anc medium
2 2 <NA> NA 1 12 ns medium anc medium
3 3 <NA> NA 2 32 ns medium anc small
4 4 <NA> NA 3 34 ns medium anc small
5 5 <NA> NA 4 36 ns medium anc small
6 6 <NA> NA 3 36 ns medium anc small

17.3. OUCH 183

NOTE: a very important detail about ouch is that it matches trees with data and regimes
using the node labels stored in the rownames of the objects you pass to the ouch functions.
So it is important to make sure that your dataframes and vectors are appropriately
named. The dataframe bimac already has the correct row names, but we do so here just
to illustrate.

> rownames(bimac) <- bimac$node

ouch was designed around a rectangular data model, so although the tree object is not
a dataframe internally, it still helps us to build the data as a dataframe before making
the ouchtree objects. The central organizing element is the node: it has a node number
(usually an integer but it is actually a unique character string), an ancestor to which
it is joined by a branch, a time since the root of the tree, and optional label such as a
species name. The hypotheses which we use are assigned by ”painting”particular regimes
on branches. It is convenient to represent each model or hypothesis as a column on the
dataframe, with the regime assigned to the node (that is, it is assigned to the branch
connecting the node to its ancestor).

Make an ouchtree object using the ouchtree constructor. with is a very nice function
to create a small local environment so that you can use a dataframe’s elements directly
without using the bimac$ prefix. It is similar to an attach but it is temporary – only
lasting as long as the call itself. I like it much better than attach because I sometimes
forget what I’ve attached and run into problems later. Also, with attach, you are actually
working with a copy of the original dataframe object, so updating values is trickly. With
with, it is more clear what’s going on, and I don’t tend to make those mistakes.

> tree <- with(bimac, ouchtree(node,ancestor,time/max(time),species))
> plot(tree)

184 CHAPTER 17. INTRODUCTION TO OU MODELS

0.0 0.2 0.4 0.6 0.8 1.0

time

po

se

sc
sn

wb
wa

be

bn
bc

lb
la

nusa
gb

ga
gm

ocfe

li

mg
md

t1
t2

unspec

ouch fits the OU model Eq. 17.2 along each branch of the phylogeny. While ↵ and �

are held constant across the entire tree, the optima along each branch ✓ are allowed to
vary. Users can then ”paint” various combinations of optima on the tree to reflect various
biological scenarios.

For example, the dataset bimac was used to test the hypothesis of character displacement
using an interspecific daaset of body sizes and sympatry/allopatry ?. The analysis tested
several di↵erent models, which are included with bimac. They are: ”OU.1” or global
optimum, ”OU.3” or small, medium, and large regimes depending on the body size of the
observed species (terminal branches only, internal branches painted ”medium”, ”OU.4”
or the same as ”OU.3” but with internal branches given their own unique regime called
”ancestral”, and ”OU.LP” based on a linear parsimony reconstruction of the colonization
events (i.e., that as species came into sympatry, they diverged in body size).

17.3. OUCH 185

17.3.2 Plotting ouchtrees

You can plot the regime paintings on the tree, and set options such as line widths for
prettier plots. ouch has a very nice feature which allows plotting of the alternative models
on one plot.

> plot(tree, regimes=bimac[c("OU.1", "OU.3", "OU.4", "OU.LP")], lwd=6)

0.0 0.6

time

po

se

sc

sn

wb
wa

be

bn

bc

lb
la

nu
sa
gb

ga

gm

oc
fe

li

mg

md

t1

t2

ns

0.0 0.6

time

be

bn

bc

lb
la

gm

0.0 0.6

time

nu
sa
gb

ga

oc
fe

li

mg

md

t1

t2

0.0 0.6

time

po

se

sc

sn

wb
wa

large
medium
small

0.0 0.6

time

0.0 0.6

time

be

bn

bc

lb
la

gm

0.0 0.6

time

nu
sa
gb

ga

oc
fe

li

mg

md

t1

t2

0.0 0.6

time

po

se

sc

sn

wb
wa

anc
large
medium
small

0.0 0.6

time

be

bn

bc

lb
la

gm

0.0 0.6

time

nu
sa
gb

ga

oc
fe

li

mg

md

t1

t2

0.0 0.6

time

po

se

sc

sn

wb
wa

large
medium
small

Remember that you can pass a single vector or a data frame to the regimes parameter,
but it must have the appropriate row names or names in the case of a vector. The regimes
are not part of the ouchtree object, because they represent our hypothesis of evolution
along the tree, rather than the tree itself. It is part of the original dataframe from which
we derived the tree, so remember to refer to bimac when passing the regimes to the plot
function.

186 CHAPTER 17. INTRODUCTION TO OU MODELS

17.3.3 Fitting models

There are two main model fitting functions in ouch, brown, which fits Brownian motion
models, and hansen, which fits OU models to comparative data. The call to brown is
particularly simple, as it takes only the data and the tree:

> brown(log(bimac['size']),tree)

call:
brown(data = log(bimac["size"]), tree = tree)

nodes ancestors times labels size
1 1 <NA> 0.0000000 <NA> NA
2 2 1 0.3157895 <NA> NA
3 3 2 0.8421053 <NA> NA
4 4 3 0.8947368 <NA> NA
5 5 4 0.9473684 <NA> NA
6 6 3 0.9473684 <NA> NA
7 7 1 0.2105263 <NA> NA
8 8 7 0.3421053 <NA> NA
9 9 8 0.4736842 <NA> NA
10 10 9 0.6052632 <NA> NA
11 11 10 0.7368421 <NA> NA
12 12 9 0.7368421 <NA> NA
13 13 8 0.5789474 <NA> NA
14 14 13 0.6842105 <NA> NA
15 15 14 0.8947368 <NA> NA
16 16 15 0.9473684 <NA> NA
17 17 7 0.7368421 <NA> NA
18 18 17 0.7894737 <NA> NA
19 19 18 0.8947368 <NA> NA
20 20 19 0.9473684 <NA> NA
21 21 20 0.9736842 <NA> NA
22 22 19 0.9473684 <NA> NA
23 23 2 1.0000000 po 2.602690
24 24 4 1.0000000 se 2.660260
25 25 5 1.0000000 sc 2.660260
26 26 5 1.0000000 sn 2.653242
27 27 6 1.0000000 wb 2.674149
28 28 6 1.0000000 wa 2.701361
29 29 10 1.0000000 be 3.161247
30 30 11 1.0000000 bn 3.299534
31 31 11 1.0000000 bc 3.328627
32 32 12 1.0000000 lb 3.353407

17.3. OUCH 187

33 33 12 1.0000000 la 3.360375
34 34 13 1.0000000 nu 3.049273
35 35 14 1.0000000 sa 2.906901
36 36 15 1.0000000 gb 2.980619
37 37 16 1.0000000 ga 2.933857
38 38 16 1.0000000 gm 2.975530
39 39 17 1.0000000 oc 3.104587
40 40 18 1.0000000 fe 3.346389
41 41 20 1.0000000 li 2.928524
42 42 21 1.0000000 mg 2.939162
43 43 21 1.0000000 md 2.990720
44 44 22 1.0000000 t1 3.058707
45 45 22 1.0000000 t2 3.068053

sigma squared:
[,1]

[1,] 0.04311003

theta:
NULL

loglik deviance aic aic.c sic dof
17.33129 -34.66257 -30.66257 -30.06257 -28.39158 2.00000

What is returned is an object of class browntree. It contains all input including the
function call, the tree and data), as well as the parameter estimate for � and the model
fit statistics including: the log-likelihood, the deviance (�2 ⇤ log(L)), the information
criteria AIC, AICc (corrected for small sample size), and SIC, and the model degrees
of freedom.

It is a good practice to save this, as it encapsulates the analysis. From this, we can rerun
the model fit.

> h1 <- brown(log(bimac['size']),tree)

hansen models are slightly more complex. In addition to �, we are now fitting ↵, the
strength of selection, and all of the optima ✓ specified by our model. This maximum-
likelihood search now requires an initial guesses. If you have no idea, a good starting guess
is 1. If you want to be sure, you can intiate searches with di↵erent starting guesses. You
can also specify alternative optimization algorithms and increase or decrease the relative
tolerance, which is the stringency by which convergence is assessed. Typically, the default
is roughly reltol=1e-8, and the limit of machine precision is in the neighborhood of
reltol=1e-15.

> h2 <- hansen(log(bimac['size']),tree,bimac['OU.1'],sqrt.alpha=1,sigma=1)
> h3 <- hansen(log(bimac['size']),tree,bimac['OU.3'], sqrt.alpha =1,sigma=1)

188 CHAPTER 17. INTRODUCTION TO OU MODELS

> h4 <- hansen(log(bimac['size']),tree,bimac['OU.4'], sqrt.alpha =1,sigma=1)
> h5 <- hansen(log(bimac['size']),tree,bimac['OU.LP'], sqrt.alpha =1,sigma=1,reltol=1e-5)

17.3.4 hansentree and ouchtree methods

We can see the model results by typing h5, which will execute the print method for
this class. You could also use the attributes function, but this will dump too much
information. ouchtree objects and the classes derived from them contain information
that is used in internal calculations of the algorithms, not of general interest to users.

Additional accessor functions include:

> coef(h5) # the coefficients of the fitted model

$sqrt.alpha
[1] 1.616580

$sigma
[1] 0.2249274

$theta
$theta$size

large medium small
3.355087 3.040729 2.565249

$alpha.matrix
[,1]

[1,] 2.61333

$sigma.sq.matrix
[,1]

[1,] 0.05059232

> logLik(h5) # the log-likelihood value

[1] 24.81823

> summary(h5) # everything in the print method except the tree+data

We can now generate a table of our model fits:

17.3. OUCH 189

> unlist(summary(h5)[c('aic', 'aic.c', 'sic', 'dof')]) # just the model fit statistics

aic aic.c sic dof
-39.63645 -36.10704 -33.95898 5.00000

> # on a single line
> h <- list(h1, h2, h3, h4, h5) # store all our fitted models in a list
> names(h) <- c("BM", "OU.1", "OU.3", "OU.4", "OU.LP")
> sapply(h, function(x) unlist(summary(x)[c('aic', 'aic.c', 'sic', 'dof')]))

BM OU.1 OU.3 OU.4 OU.LP
aic -30.66257 -25.39364 -29.15573 -35.22319 -39.63645
aic.c -30.06257 -24.13048 -25.62631 -29.97319 -36.10704
sic -28.39158 -21.98715 -23.47826 -28.41022 -33.95898
dof 2.00000 3.00000 5.00000 6.00000 5.00000

By storing the model fits in a list, we can use apply methods to get the statistics from
all the models at once. sapply returns a matrix if possible.

> h.ic <- sapply(h, function(x) unlist(summary(x)[c('aic', 'aic.c', 'sic', 'dof')]))
> print(h.ic, digits = 3)

BM OU.1 OU.3 OU.4 OU.LP
aic -30.7 -25.4 -29.2 -35.2 -39.6
aic.c -30.1 -24.1 -25.6 -30.0 -36.1
sic -28.4 -22.0 -23.5 -28.4 -34.0
dof 2.0 3.0 5.0 6.0 5.0

Simulation and bootstrap methods: simulate generates random deviates or sets of sim-
ulated tip data based on the fitted model. The input is a fitted model hansentree or
browntree, and the output is a list of dataframes, each comparable to the original data.
These can then be used to refit the model.

> h5.sim <- simulate(object = h5, nsim=10) # saves 10 sets of simulated data

update refits the model, with one or more parameters changed.

> summary(update(object = h5, data = h5.sim[[1]])) # fit the first dataset

190 CHAPTER 17. INTRODUCTION TO OU MODELS

$call
hansen(data = data, tree = object, regimes = regimes, sqrt.alpha = sqrt.alpha,

sigma = sigma)

$conv.code
[1] 0

$optimizer.message
NULL

$alpha
[,1]

[1,] 1.537793

$sigma.squared
[,1]

[1,] 0.03969809

$optima
$optima$size

large medium small
3.396533 3.019229 2.408103

$loglik
[1] 24.2015

$deviance
[1] -48.403

$aic
[1] -38.403

$aic.c
[1] -34.87359

$sic
[1] -32.72553

$dof
[1] 5

> h5.sim.fit <- lapply(h5.sim, function(x) update(h5, x)) # fit all 10 simulations

17.3. OUCH 191

bootstrap is a convenience function for generating parametric bootstraps of the param-
eter estimates. It takes the fitted model, performs the simulations, refits, and outputs a
dataframe of parameter estimates.

> bootstrap(object = h5, nboot=10)

alpha sigma.squared optima.size.large optima.size.medium
1 5.655594 0.07516647 3.357344 3.050044
2 6.554647 0.08362697 3.307289 3.039102
3 4.394283 0.05017280 3.388255 3.029544
4 5.219845 0.08214195 3.309318 3.083165
5 4.410114 0.04231034 3.489863 3.144652
6 16.798593 0.18899210 3.297658 3.052313
7 6.441586 0.07012845 3.331735 3.092722
8 5.792469 0.08273575 3.243500 3.047785
9 1.683254 0.04143253 3.463243 3.030148
10 2.184674 0.04651457 3.379991 3.063189

optima.size.small loglik aic aic.c sic dof
1 2.546907 26.62548 -43.25095 -39.72154 -37.57348 5
2 2.705521 26.77364 -43.54728 -40.01787 -37.86981 5
3 2.608936 29.03324 -48.06648 -44.53707 -42.38901 5
4 2.589340 24.87756 -39.75512 -36.22571 -34.07765 5
5 2.582032 31.02622 -52.05244 -48.52303 -46.37497 5
6 2.574254 27.11561 -44.23122 -40.70180 -38.55375 5
7 2.613275 28.63411 -47.26822 -43.73881 -41.59075 5
8 2.652373 25.74096 -41.48193 -37.95252 -35.80446 5
9 2.402024 24.22658 -38.45315 -34.92374 -32.77568 5
10 2.527909 24.53509 -39.07018 -35.54077 -33.39271 5

17.3.5 painting regimes on trees

A new function in ouch is paint. Previously, it was up to users to set up regimes
manually by editing spreadsheets. paint helps with this task by specifying the regimes
on particular species, subtrees, or particular branches.

There are two parameters to paint, subtrees, which paints the entire subtree which
descends from the node, and branch, which paints the branch connecting the node to it’s
ancestor. For either, you specify the node label (remember it’s a character and needs to
be quoted), and set it equal to the name of the regime you want to specify.

Let’s try it on the bimac tree and try to recreate the OU.LP regime:

> plot(tree, node.names=T)

192 CHAPTER 17. INTRODUCTION TO OU MODELS

0.0 0.2 0.4 0.6 0.8 1.0

time

2 3
4 5

6

7

8

9
10 11

12

13 14 1516

1718 19
2021

22

23 po

24 se

25 sc
26 sn

27 wb
28 wa

29 be

30 bn
31 bc

32 lb
33 la

34 nu35 sa
36 gb

37 ga
38 gm

39 oc40 fe

41 li

42 mg
43 md

44 t1
45 t2

unspec

Paint the subtrees first, take a look:

> ou.lp <- paint(tree, subtree=c("1"="medium","9"="large","2"="small"))
> plot(tree, regimes=ou.lp, node.names=T)

17.3. OUCH 193

0.0 0.2 0.4 0.6 0.8 1.0

time

10 11

12
29 be

30 bn
31 bc

32 lb
33 la

0.0 0.2 0.4 0.6 0.8 1.0

time

2

7

8

9

13 14 1516

1718 19
2021

22

34 nu35 sa
36 gb

37 ga
38 gm

39 oc40 fe

41 li

42 mg
43 md

44 t1
45 t2

0.0 0.2 0.4 0.6 0.8 1.0

time

3
4 5

6
23 po

24 se

25 sc
26 sn

27 wb
28 wa

large
medium
small

But there was an independent switch from medium to large at species ”gm”, or node ”38”,
and the node connecting ”9” to its ancestor:

> ou.lp <- paint(tree, subtree=c("1"="medium","9"="large","2"="small"),
+ branch=c("38"="large","2"="medium"))

Compare it to the original ”OU.LP” from above.

> plot(tree, regimes=ou.lp, node.names=T)

194 CHAPTER 17. INTRODUCTION TO OU MODELS

0.0 0.2 0.4 0.6 0.8 1.0

time

10 11

12
29 be

30 bn
31 bc

32 lb
33 la

38 gm

0.0 0.2 0.4 0.6 0.8 1.0

time

2

7

8

9

13 14 1516

1718 19
2021

22

34 nu35 sa
36 gb

37 ga

39 oc40 fe

41 li

42 mg
43 md

44 t1
45 t2

0.0 0.2 0.4 0.6 0.8 1.0

time

3
4 5

6
23 po

24 se

25 sc
26 sn

27 wb
28 wa

large
medium
small

We can create alternative paintings of the regimes to test against the data. Suppose we
wanted to add a ”clade specific” hypothesis that diverged in a similar time period (this
is a completely made-up hypothesis, just for example):

> ou.clades <- paint(tree, subtree=c("1"="A","7"="B", "8"="C"),
+ branch=c("8"="C", "7"="C", "1"="A"))
> plot(tree, regimes=ou.clades, node.names=T)

17.3. OUCH 195

0.0 0.2 0.4 0.6 0.8 1.0

time

2 3
4 5

6
23 po

24 se

25 sc
26 sn

27 wb
28 wa

0.0 0.2 0.4 0.6 0.8 1.0

time

1718 19
2021

22

39 oc40 fe

41 li

42 mg
43 md

44 t1
45 t2

0.0 0.2 0.4 0.6 0.8 1.0

time

7

8

9
10 11

12

13 14 1516

29 be

30 bn
31 bc

32 lb
33 la

34 nu35 sa
36 gb

37 ga
38 gm

A
B
C

Run the model:

> h6 <- hansen(log(bimac['size']),tree, regimes=ou.clades, sqrt.alpha =1,sigma=1)

Rebuild our table and compare models:

> h <- append(h, h6) # append (add on) new model results to our list h
> names(h)[length(h)] <- "OU.clades" # add the name of the new model
> names(h)

[1] "BM" "OU.1" "OU.3" "OU.4" "OU.LP" "OU.clades"

> h.ic <- sapply(h, function(x) unlist(summary(x)[c('aic', 'aic.c', 'sic', 'dof')]))
> print(h.ic, digits = 3)

BM OU.1 OU.3 OU.4 OU.LP OU.clades
aic -30.7 -25.4 -29.2 -35.2 -39.6 -30.7

196 CHAPTER 17. INTRODUCTION TO OU MODELS

aic.c -30.1 -24.1 -25.6 -30.0 -36.1 -27.1
sic -28.4 -22.0 -23.5 -28.4 -34.0 -25.0
dof 2.0 3.0 5.0 6.0 5.0 5.0

Chapter 18

Bivariate ouch

The ouch package has been completely rewritten by Aaron King to implement a bivariate
model, as well as the new S4 class system described previously.

Correlated evolution is a major feature of evolutionary theory, and of great interest among
comparative biologists. However, there have been few attempts to develop a bivariate
OU model for comparative analysis. NOTE: We are about to submit a paper on this,
please cite us (and wait for us to publish first!).

18.0.6 The Bivariate model

The Hansen model describes the evolutionary processes operative on a single quantitative
character ??. In the case of two characters, we will accordingly have two equations.

dX1(t) = ↵1 (✓1 �X1(t)) dt+ �1 dB1(t). (18.1)

dX2(t) = ↵2 (✓2 �X2(t)) dt+ �2 dB2(t). (18.2)

The above system of eqs. 18.3 can be written in matrix form with vectors in the place of
dX, X, and dB(t), and square matrices in place of ↵ and �. The ✓ are already vector
valued in the univariate case with a single value per adaptive regime. Here we simply
have separate ✓ vectors for each character.

18.0.7 No Correlations

When evolution is uncorrelated, the ↵ and � matrices are diagonal:

↵ =

✓
↵11 0
0 ↵22

◆
� =

✓
�11 0
0 �22

◆
.

197

198 CHAPTER 18. BIVARIATE OUCH

This form implies that neither character influences the evolution of the other (i.e., they are
evolving independently of one another, and we have a simple duplication of the univariate
case).

18.1 Correlated Evolution

We can readily see, however, that the matrices may have o↵-diagonal elements. These
evolutionary correlations can enter in as o↵-diagonal terms in either the ↵ or the � terms.
In particular, they will have the following form:

↵ =

✓
↵11 ↵21

↵12 ↵22

◆
� =

✓
�11 0
�12 �22

◆
.

Where ↵12 = ↵21, and without loss of generality, � is lower-triangular.

Written out as separate equations, the model has the following form:

dX1(t) = ↵11 (✓1 �X1(t)) dt+ ↵12 (✓2 �X2(t)) dt+ �11 dB1(t).

dX2(t) = ↵22 (✓2 �X2(t)) dt+ ↵12 (✓1 �X1(t)) dt+ �22 dB2(t) + �12 dB1(t).

18.2 Implementation in ouch

To illustrate, we reanalyzed the evolution of sexual size dimorphism in association with
habitat specialization in Anolis lizards (?), reformulated as evolution in male and female
body size.

Load the data (tree+quantitive data) and regimes:

> require(ouch)
> regimes <- read.csv("Rdata/regimes.csv", row.names = 1)
> ssd <- read.csv("Rdata/ssd.data.csv", row.names = 1)
> otree <- with(ssd, ouchtree(nodes, ancestors, times, labels))
> xdata <- log(ssd[c("fSVL", "mSVL")])
> names(xdata) <- paste("log", names(xdata), sep = ".")
> nreg <- length(regimes)

ouch now requires you to specify an initial guess for the alpha and sigma matrices.
Univariate models are specified by providing a single value. The bivariate model is
specified by providing multiple values for these guesses. The three element

18.2. IMPLEMENTATION IN OUCH 199

vector will be transformed into a symmetric 2x2 matrix for alpha and a lower-
triangular matrix for sigma.

> alpha.guess <- c(1, 0, 1)
> sigma.guess <- c(1, 1, 1)

Fit the model for the first regime:

> tic <- Sys.time()
> hansen(data = xdata, tree = otree, regimes = regimes[5], sqrt.alpha = alpha.guess,
+ sigma = sigma.guess, method = "Nelder-Mead", maxit = 3000, reltol = 1e-12)

call:
hansen(data = xdata, tree = otree, regimes = regimes[5], sqrt.alpha = alpha.guess,

sigma = sigma.guess, method = "Nelder-Mead", maxit = 3000,
reltol = 1e-12)
nodes ancestors times labels TW.6 TW.6.1 log.fSVL log.mSVL

1 1 <NA> 0.00 twig twig NA NA
2 2 3 0.62 trunk-crown trunk-crown NA NA
3 3 4 0.37 trunk-crown trunk-crown NA NA
4 4 5 0.14 crown-giant crown-giant NA NA
5 5 1 0.08 twig twig NA NA
6 6 8 0.65 trunk-ground trunk-ground NA NA
7 7 8 0.61 trunk-ground trunk-ground NA NA
8 8 10 0.54 trunk-ground trunk-ground NA NA
9 9 10 0.65 grass-bush grass-bush NA NA
10 10 12 0.50 trunk-ground trunk-ground NA NA
11 11 12 0.79 trunk-crown trunk-crown NA NA
12 12 14 0.43 trunk-ground trunk-ground NA NA
13 13 14 0.63 trunk trunk NA NA
14 14 23 0.29 trunk-ground trunk-ground NA NA
15 15 16 0.78 trunk-ground trunk-ground NA NA
16 16 17 0.57 trunk-ground trunk-ground NA NA
17 17 22 0.36 trunk-ground trunk-ground NA NA
18 18 19 0.77 trunk-crown trunk-crown NA NA
19 19 20 0.72 trunk-crown trunk-crown NA NA
20 20 21 0.51 trunk-crown trunk-crown NA NA
21 21 22 0.46 trunk-ground trunk-ground NA NA
22 22 23 0.27 trunk-ground trunk-ground NA NA
23 23 28 0.14 trunk-ground trunk-ground NA NA
24 24 124 0.60 trunk-crown trunk-crown NA NA
124 124 25 0.47 trunk-crown trunk-crown NA NA
25 25 26 0.41 trunk-crown trunk-crown NA NA

200 CHAPTER 18. BIVARIATE OUCH

26 26 27 0.33 twig twig NA NA
27 27 28 0.23 twig twig NA NA
28 28 34 0.11 twig twig NA NA
29 29 145 0.40 crown-giant crown-giant NA NA
145 145 34 0.28 crown-giant crown-giant NA NA
30 30 31 0.38 grass-bush grass-bush NA NA
31 31 34 0.22 twig twig NA NA
32 32 33 0.77 trunk-ground trunk-ground NA NA
33 33 161 0.72 trunk-ground trunk-ground NA NA
161 161 34 0.44 trunk-ground trunk-ground NA NA
34 34 1 0.08 twig twig NA NA
36 36 2 1.00 A_aliniger trunk-crown trunk-crown 3.815512 4.063885
62 62 24 1.00 A_allisoni trunk-crown trunk-crown 4.100989 4.382027
54 54 17 1.00 A_allogus trunk-ground trunk-ground 3.749504 4.030695
64 64 134 1.00 A_alutaceu grass-bush grass-bush 3.487375 3.569533
134 134 27 0.54 grass-bush grass-bush NA NA
60 60 110 1.00 A_angustic twig twig 3.653252 3.788725
110 110 26 0.40 twig twig NA NA
49 49 13 1.00 A_breviros trunk trunk 3.693867 3.864931
37 37 2 1.00 A_chlorocy trunk-crown trunk-crown 3.992681 4.276666
38 38 3 1.00 A_coelesti trunk-crown trunk-crown 4.000034 4.247066
44 44 7 1.00 A_cooki trunk-ground trunk-ground 3.728100 4.085976
43 43 7 1.00 A_cristate trunk-ground trunk-ground 3.797734 4.195697
66 66 29 1.00 A_cuvieri crown-giant crown-giant 4.782479 4.877485
70 70 32 1.00 A_cybotes trunk-ground trunk-ground 3.927896 4.188138
50 50 13 1.00 A_distichu trunk trunk 3.797734 3.935740
39 39 413 1.00 A_equestri crown-giant crown-giant 5.045359 5.129899
413 413 4 0.90 crown-giant crown-giant NA NA
48 48 11 1.00 A_evermann trunk-crown trunk-crown 3.958907 4.258446
56 56 18 1.00 A_garmani crown-giant crown-giant 4.412798 4.700480
57 57 19 1.00 A_grahami trunk-crown trunk-crown 3.784190 4.182050
42 42 6 1.00 A_gundlach trunk-ground trunk-ground 3.811097 4.171306
35 35 403 1.00 A_henderso grass-bush grass-bush 3.693867 3.869116
403 403 4 0.58 grass-bush grass-bush NA NA
53 53 16 1.00 A_homolech trunk-ground trunk-ground 3.706228 3.958907
69 69 150 1.00 A_insolitu twig twig 3.676301 3.737670
150 150 31 0.65 twig twig NA NA
46 46 9 1.00 A_krugi grass-bush grass-bush 3.671225 3.906005
59 59 101 1.00 A_lineatop trunk-ground trunk-ground 3.788725 4.177459
101 101 21 0.62 trunk-ground trunk-ground NA NA
61 61 113 1.00 A_loysiana trunk trunk 3.575151 3.706228
113 113 25 0.59 trunk trunk NA NA
40 40 5 1.00 A_occultus twig twig 3.668677 3.663562

18.2. IMPLEMENTATION IN OUCH 201

68 68 30 1.00 A_olssoni grass-bush grass-bush 3.703768 3.802208
55 55 18 1.00 A_opalinus trunk-crown trunk-crown 3.701302 3.901973
52 52 15 1.00 A_ophiolep grass-bush grass-bush 3.440418 3.600048
41 41 6 1.00 A_poncensi grass-bush grass-bush 3.678829 3.819908
63 63 24 1.00 A_porcatus trunk-crown trunk-crown 3.998201 4.261270
45 45 9 1.00 A_pulchell grass-bush grass-bush 3.610918 3.848018
65 65 29 1.00 A_ricordii crown-giant crown-giant 4.933754 5.023222
51 51 15 1.00 A_sagrei trunk-ground trunk-ground 3.688879 3.977811
67 67 30 1.00 A_semiline grass-bush grass-bush 3.616309 3.728100
71 71 32 1.00 A_shrevei trunk-ground trunk-ground 3.832980 4.001864
47 47 11 1.00 A_stratulu trunk-crown trunk-crown 3.686376 3.843744
58 58 20 1.00 A_valencie twig twig 4.226834 4.374498
72 72 33 1.00 A_whiteman trunk-ground trunk-ground 3.873282 4.082609

alpha:
[,1] [,2]

[1,] 3.2885637 0.2651125
[2,] 0.2651125 5.0304925

sigma squared:
[,1] [,2]

[1,] 0.1164814 0.1606944
[2,] 0.1606944 0.2412312

theta:
$log.fSVL
crown-giant grass-bush trunk trunk-crown trunk-ground twig

4.966605 3.605634 3.678655 3.912812 3.772731 3.798625

$log.mSVL
crown-giant grass-bush trunk trunk-crown trunk-ground twig

5.003842 3.763422 3.832975 4.171052 4.076491 3.874264

loglik deviance aic aic.c sic dof
82.05319 -164.10638 -128.10638 -116.10638 -86.15318 18.00000

> toc <- Sys.time()
> print(toc - tic)

Time difference of 11.59748 secs

Fitting the Hansen model is much more complex than the Brownian motion, because the
↵ enters non-linearly into the likelihood function. With more variables, the complexity

202 CHAPTER 18. BIVARIATE OUCH

increases, with a less well-behaved likelihood surface than the univariate case. There are
frequently convergence issues.

Using the subplex method from package subplex helps. Other things to try include
increasing the tolerance, increasing the number of maximum iterations allowed to reach
convergence, and drawing initial guesses for alpha and sigma at random (and discarding
the bad guesses). This of course increases computer time.

> tic <- Sys.time()
> h.subplex <- hansen(data = xdata, tree = otree, regimes = regimes[1],
+ sqrt.alpha = alpha.guess, sigma = sigma.guess, method = "subplex",
+ maxit = 20000, reltol = 1e-12)
> toc <- Sys.time()
> print(toc - tic)

Time difference of 1.144624 mins

> summary(h.subplex)

$call
hansen(data = xdata, tree = otree, regimes = regimes[1], sqrt.alpha = alpha.guess,

sigma = sigma.guess, method = "subplex", maxit = 20000, reltol = 1e-12)

$conv.code
[1] 0

$optimizer.message
NULL

$alpha
[,1] [,2]

[1,] 3.0345706 0.7042764
[2,] 0.7042764 4.3493269

$sigma.squared
[,1] [,2]

[1,] 0.1232641 0.1585029
[2,] 0.1585029 0.2201611

$optima
$optima$log.fSVL

ancestral crown-giant grass-bush trunk trunk-crown trunk-ground twig
4.688810 4.957811 3.588247 3.657690 3.888971 3.758807 3.777041

18.2. IMPLEMENTATION IN OUCH 203

$optima$log.mSVL
ancestral crown-giant grass-bush trunk trunk-crown trunk-ground twig
6.001249 4.959877 3.710174 3.775684 4.111575 4.050079 3.807817

$loglik
[1] 82.4903

$deviance
[1] -164.9806

$aic
[1] -124.9806

$aic.c
[1] -109.7079

$sic
[1] -78.36594

$dof
[1] 20

The Brownian motion model is fit:

> brown.fit <- brown(data = xdata, tree = otree)
> summary(brown.fit)

$call
brown(data = xdata, tree = otree)

$sigma.squared
[,1] [,2]

[1,] 0.1523957 0.1564986
[2,] 0.1564986 0.1746020

$theta
$theta$log.fSVL
[1] 3.954663

$theta$log.mSVL
[1] 4.118798

204 CHAPTER 18. BIVARIATE OUCH

$loglik
[1] 22.56325

$deviance
[1] -45.12651

$aic
[1] -35.12651

$aic.c
[1] -34.26937

$sic
[1] -23.47284

$dof
[1] 5

18.3 Exercises

1. Run the Hansen model on the remaining regimes. Can you use an apply method
to run them all at once?

2. Plot the multiple regime hypotheses.

3. Compare results.

18.4 Variations of the OU Model — Brian?

Instead of assuming a constant � across the entire tree, ? developed a Brownian motion
model that allows two or more � values. This can be interpreted as having di↵erent rates
of evolution in di↵erent regions of the tree.

Other possibilities exist. The di�culty for the future will be twofold: (1) Ensuring that
the complexity of the model is reasonable given the information content of the data (i.e.,
are the parameter estimates and likelihoods well-behaved?). (2) Thinking hard about
the best evolutionary and biological interpretations of the models.

Chapter 19

Phylogenetic Community Analysis
by Todd Oakley

Make sure your working directory points to the class directory, which in turn has inside
a directory called Data

> require(picante)
> #setwd("/RClass")

Load in the distribution data set. This is just a text file in phylocom format that I
created based on the Mayr and Diamond data. Type:

> birds<-readsample("Data/bird_dist.phylocom")

Load in geographical data on the islands

> geo<-read.csv("Data/IslandGeoData.csv", na.strings = "-9999")

You can see the type of data

> head(geo)

Island Area..km2. Height..m. Distance.to.the.nearest.Island..km.
1 1_Anchorites 0.52 0 174
2 1_Credner 1.00 0 8
3 1_Crown 14.00 566 10
4 1_Duke_of_York 52.00 0 13
5 1_Dyaul 110.00 180 14
6 1_Emirau 41.00 0 17

205

206CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

And plot the data

> plot(geo$Area, geo$Height)

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

0 5000 10000 15000 20000 25000 30000 35000

0
50
0

10
00

15
00

20
00

25
00

geo$Area

ge
o$
H
ei
gh
t

> plot(geo$Area, geo$Distance)

207

●

●●
●●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●
●
●

●

●

0 5000 10000 15000 20000 25000 30000 35000

0
50

10
0

15
0

20
0

25
0

geo$Area

ge
o$
D
is
ta
nc
e

Load in the bird phylogeny. This is just a text file in the newick tree format. The tree
is based on the published molecular phylogeny of Hackett et al 2008 in Science. That
published tree had only about 100 species, whereas the island dataset has 500 species.
The island birds that are not in the published phylogeny are ‘grafted’ on to the molecular
phylogeny based on taxonomy using phylomatic, a program of the phylocom package.

> fulltree <- read.tree("Data/BirdTree.tre")

The community phylogenetic data are now in memory and you can conduct many of
the analyses described in the picante walkthrough. Note that the ‘object’ containing the
phylogeny is now called“fulltree”whereas in the tutorial it was called phy. Also note that
the community data are in the object called birds, but in the tutorial, it was called samp.
As one example, you can visualize the phylogeny. This tree is very large, containing over
670 species/subspecies (OTU’s), since it’s so big its a little ugly to view, but it can be
done.

> plot(fulltree)

208CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

"Guadalcanaria" inexpectata"Stresemannia" bougainvilleiMeliarchus sclateriMelidectes whitemanensisMyzomela cardinalis ssp pulcherrimaMyzomela cardinalis ssp sanfordiMyzomela cineraceaMyzomela cruentata ssp cantasMyzomela cruentata ssp coccineaMyzomela cruentata ssp erythrinaMyzomela cruentata ssp lavongaiMyzomela cruentata ssp vinaceaMyzomela eichhorni ssp atrataMyzomela eichhorni ssp eichhorniMyzomela eichhorni ssp ganongaeMyzomela erythromelas Myzomela lafargeiMyzomela malaitaeMyzomela melanocephalaMyzomela pammelaena ssp ernstmayriMyzomela pammelaena ssp hadesMyzomela pammelaena ssp nigerrimaMyzomela pammelaena ssp pammelaenaMyzomela pammelaena ssp ramsyiMyzomela pulchellaMyzomela sclateriMyzomela tristramiPhilemon albitorquesPhilemon cockerelli ssp cockerelliPhilemon cockerelli ssp umboiPhilemon eichhorniAcanthisitta chlorisAcrocephalus stentoreus ssp sumbaeCettia parensPhylloscopus amoenusPhylloscopus makirensisPhylloscopus poliocephala ssp beckiPhylloscopus poliocephala ssp bougainvilleiPhylloscopus poliocephala ssp leletensisPhylloscopus poliocephala ssp matthiaePhylloscopus poliocephala ssp moorhouseiPhylloscopus poliocephala ssp pallescensCichlornis grosvenoriCichlornis llaneaeCichlornis whitneyi ssp turipavaeMegalurus timoriensis ssp interscapularisOrtygocichla rubiginosaAplonis brunneicapilla Aplonis cantoroidesAplonis dichroaAplonis feadensis ssp feadensisAplonis feadensis ssp heurekaAplonis grandis ssp grandisAplonis grandis ssp macruraAplonis grandis ssp malaitaeAplonis insularisAplonis metallica ssp metallicaAplonis metallica ssp nitidaAplonis metallica ssp purpureicepsMino dumontii ssp krefftiArtamus insignisCoracina caledonica ssp amadonisCoracina caledonica ssp bougainvilleiCoracina caledonica ssp kulambangraeCoracina caledonica ssp welchmaniCoracina holopolia ssp holopoliaCoracina holopolia ssp pygmaeaCoracina holopolia ssp tricolorCoracina lineata ssp gracilisCoracina lineata ssp makiraeCoracina lineata ssp malaitaeCoracina lineata ssp nigrifronsCoracina lineata ssp ombriosaCoracina lineata ssp pusillaCoracina lineata ssp sublineataCoracina papuensis ssp elegansCoracina papuensis ssp eyerdamiCoracina papuensis ssp ingensCoracina papuensis ssp perpallidaCoracina papuensis ssp sclateriCoracina salomonisCoracina tenuirostris ssp admiralitatisCoracina tenuirostris ssp erythropygiaCoracina tenuirostris ssp heinrothiCoracina tenuirostris ssp matthiaeCoracina tenuirostris ssp muelleriiCoracina tenuirostris ssp nisoriaCoracina tenuirostris ssp remotaCoracina tenuirostris ssp rookiCoracina tenuirostris ssp saturatiorCoracina tenuirostris ssp ultimaCorvus orru ssp insularisCorvus woodfordi ssp meekiCorvus woodfordi ssp woodfordiLalage leucomela ssp albidiorLalage leucomela ssp conjunctaLalage leucomela ssp falsaLalage leucomela ssp karuLalage leucomela ssp ottomeyeriLalage leucomela ssp sumunaeLalage leucomela ssp tabarensisLalage leucopyga ssp affinisDicrurus hottentottus ssp laemostictusDicrurus hottentottus ssp longirostrisDicrurus hottentottus ssp meekiDicrurus megarhynchusRhipidura cockerelli ssp albina Rhipidura cockerelli ssp cockerelli Rhipidura cockerelli ssp coultasi Rhipidura cockerelli ssp floridana Rhipidura cockerelli ssp interposita Rhipidura cockerelli ssp lavellae Rhipidura cockerelli ssp septentrionalis Rhipidura drownei ssp drowneiRhipidura drownei ssp ocularis Rhipidura fuliginosa ssp brenchleyiRhipidura leucophrys ssp melaleucaRhipidura rennellianaRhipidura rufifrons ssb brunnea Rhipidura rufifrons ssb commoda Rhipidura rufifrons ssb granti Rhipidura rufifrons ssb kuperi Rhipidura rufifrons ssb rufofronta Rhipidura rufifrons ssb russata Rhipidura rufifrons ssb semirubra Rhipidura rufifrons ssb ugiensis Rhipidura rufiventris ssp finschiiRhipidura rufiventris ssp gigantaeRhipidura rufiventris ssp mussaiRhipidura rufiventris ssp niveiventrisRhipidura rufiventris ssp setosaRhipidura rufiventris ssp tangensisRhipidura tenebrosaMonarcha chrysomela ssp chrysomelaMonarcha chrysomela ssp pulcherrimusMonarcha chrysomela ssp tabarensisMonarcha chrysomela ssp whitneyorumMyiagra alecto ssp chalybeocephalaMyiagra caledonica ssp occidentalisMyiagra cervinicaudaMyiagra ferrocyanea ssp cineraMyiagra ferrocyanea ssp femininaMyiagra ferrocyanea ssp ferrocyaneaMyiagra ferrocyanea ssp malaitaeMyiagra hebetior ssp cervinicolorMyiagra hebetior ssp eichhorniMyiagra hebetior ssp hebetiorPachycephala implicata ssp implicataPachycephala implicata ssp richardsiPachycephala melanura ssp dahliPachycephala pectoralis ssp bougainvilleiPachycephala pectoralis ssp centralisPachycephala pectoralis ssp christophoriPachycephala pectoralis ssp cinnamomeaPachycephala pectoralis ssp citreogasterPachycephala pectoralis ssp femeninaPachycephala pectoralis ssp goodsoniPachycephala pectoralis ssp melanonotaPachycephala pectoralis ssp melanopteraPachycephala pectoralis ssp orioloidesPachycephala pectoralis ssp ottomeyeriPachycephala pectoralis ssp pavuvuPachycephala pectoralis ssp sanfordiPachycephala pectoralis ssp sexuvariaPachycephala pectoralis ssp tabarensisPachycephala pectoralis ssp whitneyiBombycilla garrulusRegulus calendulaFringilla montifringillaPasser montanusPloceus cucullatusVidua chalybeataSylvia nanaTurdus falklandiiPicathartes gymnocephalusCorvus coroneMalurus melanocephalusClimacteris erythropsMenura novaehollandiaeDendrocolaptes certhiaScytalopus magellanicusGrallaria variaThamnophilus nigrocinereusMionectes macconnelliTyrannus tyrannusPipra coronataPitta guajanaSmithornis rufolateralisSapayoa aenigmaCisticola exilis ssp polionotaDicaeum aeneum ssp aeneumDicaeum aeneum ssp beckiDicaeum eximium ssp eximiumDicaeum eximium ssp layardorumDicaeum eximium ssp phaeopygiumDicaeum tristrami Erythrura trichroa ssp eichhorni Erythrura trichroa ssp sigillifera Erythrura trichroa ssp woodfordi Lonchura forbesi Lonchura hunsteini ssp hunsteiniLonchura hunsteini ssp nigerrimaLonchura melaenaLonchura spectabilis ssp spectabilisNectarinia jugularis ssp flavigasterNectarinia sericea ssp corinnaNectarinia sericea ssp eichhorniGerygone flavolateralis ssp citrinaHirundo tahitica ssp ambiensHirundo tahitica ssp frontalisHirundo tahitica ssp subfuscaMonachella muelleriana ssp coultasiPetroica multicolor ssp dennisiPetroica multicolor ssp kulambangraePetroica multicolor ssp polymorphaPetroica multicolor ssp septentrionalisPitta anerythra ssp anerythraPitta anerythra ssp nigrifronsPitta anerythra ssp pallidaPitta erythrogaster ssp extimaPitta erythrogaster ssp gazellaePitta erythrogaster ssp novaehibernicaePitta erythrogaster ssp spledidaPitta sordida ssp novaeguineaePitta superbaSaxicola caprata ssp aethiops Turdus poliocephalus ssp ?Turdus poliocephalus ssp beehleriTurdus poliocephalus ssp bougainvilleiTurdus poliocephalus ssp heinrothiTurdus poliocephalus ssp kulambangraeTurdus poliocephalus ssp rennellianusTurdus poliocephalus ssp sladeniTurdus poliocephalus ssp tolokiwaeZoothera heinei ssp choiseuliZoothera heinei ssp eichhorniZoothera margaretae ssp margaretaeZoothera margaretae ssp turipavaeZoothera talaseae ssp atrigenaZoothera talaseae ssp talaseaeWoodfordia superciliosa Zosterops atrifrons ssp admiralitatisZosterops atrifrons ssp hypoxanthusZosterops atrifrons ssp ultimusZosterops griseotinctus ssp eichhorniZosterops luteirostris Zosterops metcalfii ssp floridanusZosterops metcalfii ssp metcalfiiZosterops murphyiZosterops rendovae ssp kulambangraeZosterops rendovae ssp rendovaeZosterops rendovae ssp tetipariusZosterops rennellianusZosterops splendidusZosterops stresemanniZosterops ugiensis ssp hamliniZosterops ugiensis ssp oblitusZosterops ugiensis ssp ugiensisZosterops vellalavellaAlisterus scapularisPsittacula alexandriMicropsitta finschiiChalcopsitta cardinalisPlatycercus elegansPsittacus erithacusCacatua ducorpsiCacatua galerita ssp ophthalmicaCacatua sulphureaCharmosyna margarethaeCharmosyna meekiCharmosyna placentis ssp pallidorCharmosyna rubigularisLorius albidinuchaLorius chlorocercusLorius hypoinichrous ssp devittatusTrichoglossus haematodus ssp flavicansTrichoglossus haematodus ssp massenaTrichoglossus haematodus ssp nesophilusElectus roratus ssp goodsoniElectus roratus ssp solomonensisGeoffroyus heteroclitus ssp heteroclitusGeoffroyus heteroclitus ssp hyacinthinusLoriculus tener Micropsitta bruijnii ssp brevisMicropsitta bruijnii ssp necopinataMicropsitta bruijnii ssp roseaMicropsitta finschii ssp aolaeMicropsitta finschii ssp finschiiMicropsitta finschii ssp naninaMicropsitta finschii ssp tristramiMicropsitta finschii ssp viridifronsMicropsitta meeki ssp meekiMicropsitta meeki ssp proximaMicropsitta pusio ssp beccariiMicropsitta pusio ssp pusioDaptrius aterFalco mexicanusFalco berigora ssp novaeguineaeFalco peregrinus ssp ernestiFalco severus ssp papuanusHerpetotheres cachinnansMicrastur semitorquatusCariama cristataAccipiter albogularis ssp albogularisAccipiter albogularis ssp eichhorniAccipiter albogularis ssp gilvusAccipiter albogularis ssp woodfordiAccipiter brachyurusAccipiter fasciatus ssp fasciatusAccipiter imitatorAccipiter luteoschistaceusAccipiter meyerianusAccipiter novaehollandiae ssp bougainvilleiAccipiter novaehollandiae ssp dampieriAccipiter novaehollandiae ssp lavongaiAccipiter novaehollandiae ssp lihirensisAccipiter novaehollandiae ssp malaitaeAccipiter novaehollandiae ssp manusiAccipiter novaehollandiae ssp matthiaeAccipiter novaehollandiae ssp pulchellusAccipiter novaehollandiae ssp rubianaeAccipiter novaehollandiae ssp rufoschistaceusAccipiter pricepsAviceda subcrista ssp bismarkiiAviceda subcristata ssp coultasiAviceda subcristata ssp proximaAviceda subcristata ssp robustaHaliaeetus leucogaster Haliaeetus sanfordiHaliastur indus ssp flavirostrisHaliastur indus ssp guirreneraHenicopernis infuscataButeo jamaicensisGampsonyx swainsoniiPandion haliaetusPandion haliaetus ssp melvillensisSagittarius serpentariusCathartes auraSarcoramphus papaAlcedo atthis ssp hispidoidesAlcedo atthis ssp solomonensisAlcedo pusilla ssp aolaeAlcedo pusilla ssp bougainvilleiAlcedo pusilla ssp masaujiAlcedo pusilla ssp richardsiAlcedo websteriCeyx lepidus ssp collectorisCeyx lepidus ssp disparCeyx lepidus ssp gentianusCeyx lepidus ssp malaitaeCeyx lepidus ssp meekiCeyx lepidus ssp mulcatusCeyx lepidus ssp nigromaxillaCeyx lepidus ssp sacerdotisHalcyon albonotataHalcyon bougainvillei ssp bougainvilleiHalcyon bougainvillei ssp excelsaHalcyon chloris ssp albertiHalcyon chloris ssp amoenaHalcyon chloris ssp bennettiHalcyon chloris ssp malaHalcyon chloris ssp matthiaeHalcyon chloris ssp novaehiberniaeHalcyon chloris ssp nusaeHalcyon chloris ssp pavuvuHalcyon chloris ssp solomonisHalcyon chloris ssp sororumHalcyon chloris ssp stresemanniHalcyon chloris ssp tristramiHalcyon leucopygiaHalcyon sancta ssp sanctaHalcyon saurophaga ssp admiralitatisHalcyon saurophaga ssp anachoretaeHalcyon saurophaga ssp saurophagaTanysiptera sylvia ssp leucuraTanysiptera sylvia ssp nigricepsAlcedo leucogasterMomotus momotaTodus angustirostrisBrachypteracias squamigeraCoracias caudataMerops nubicusBucco macrodactylusGalbula albirostrisCapito nigerMegalaima virensDryocopus pileatusIndicator maculatusBucorvus abyssinicusTockus camurusPhoeniculus purpureusUpupa epopsEurystomus orientalis ssp crassirostrisEurystomus orientalis ssp csolomonensisMerops philippinusPharomachrus auricepsTrogon personatusLeptosomus discolorColius coliusUrocolius indicusNesasio solomonensisNinox jacquinoti ssp eichhorniNinox jacquinoti ssp floridaeNinox jacquinoti ssp grantiNinox jacquinoti ssp jacquinotiNinox jacquinoti ssp malaitaeNinox jacquinoti ssp monoNinox jacquinoti ssp roseoaxillarisNinox meekiNinox odiosa Ninox variegata ssp superiorNinox variegata ssp variegataPhodilus badiusTyto albaSpeotyto cuniculariaStrix occidentalisTyto alba ssp crassirostris Tyto aurantiaTyto novaehollandiae ssp manusiArenaria interpresJacana jacanaRostratula benghalensisPedionomus torquatusThinocorus orbignyianusDromas ardeolaLarus marinusTurnix sylvaticaBurhinus bistriatusCharadrius vociferusPhegornis mitchelliiHaematopus ostralegusCharadrius dubius ssp dubius Esacus magnirostrisHimantopus leucocephalus Irediparra gallinacea ssp ?Amaurornis olivaceus ssp moluccanusAmaurornis olivaceus ssp nigrifronsAmaurornis olivaceus ssp ultimusGallirallus insignisGallirallus philippensis ssp admiralitatisGallirallus philippensis ssp anachoretaeGallirallus philippensis ssp christophoriGallirallus philippensis ssp lesouefiGallirallus philippensis ssp meyeriGallirallus philippensis ssp praedoGallirallus philippensis ssp reductusGallirallus rovianaeGymnocrex plumbeiventris Nesoclopeus woodfordi ssp immaculatusNesoclopeus woodfordi ssp tertiusNesoclopeus woodfordi ssp woodfordiPareudiastes sylvestrisPoliolimnas cinereus ssp leucophrysPoliolimnas cinereus ssp meekiPorphyrio porphyrio ssp samoensisPorzana tabuensis ssp tabuensisRallina tricolor ssp convicta Rallina tricolor ssp laetaAramus guaraunaGrus canadensisPsophia crepitansHeliornis fulicaSarothrura elegansHimantornis haematopusRallus limicolaCacomantis variolosus ssp addendusCacomantis variolosus ssp blandusCacomantis variolosus ssp fortiorCacomantis variolosus ssp macrocercusCacomantis variolosus ssp tabarensisCacomantis variolosus ssp websteriChrysococcyx lucidus ssp hartertiEudynamys scolopacea ssp ?Eudynamys scolopacea ssp albertiEudynamys scolopacea ssp salvadoriiScythrops novaehollandiaeCentropus alteralbus Centropus milo ssp albidiventrisCentropus milo ssp miloCentropus violaceusCentropus viridisCoua cristataCoccyzus americanusPhaenicophaeus curvirostrisCuculus canorusCrotophaga sulcirostrisGeococcyx californianusChoriotis koriEupodotis ruficristaAnhinga anhingaPhalacrocorax carboMorus bassanusFregata magnificensArdea alba ssp modestaArdea intermedia ssp intermediaButorides striatus ssp solomonensisEgretta sacra ssp sacraIxobrychus flavicollis ssp australisIxobrychus flavicollis ssp woodfordiIxobrychus sinensisNycticorax caledonicus ssp hilliNycticorax caledonicus ssp mandibularisArdea herodiasCochlearius cochleariusEudocimus albusBalaeniceps rexScopus umbrettaPelecanus occidentalisPlatalea regiaThreskiornis moluccus ssp pygmaeusPelecanus conspicillatusPhalacrocorax melanoleucos ssp brevicaudaPhalacrocorax melanoleucos ssp melanoleucosCiconia ciconiaDiomedea nigripesOceanodroma tethysPelecanoides urinatrixPuffinus griseusOceanites oceanicusEudyptula minorGavia immerCorythaeola cristataTauraco erythrolophusOpisthocomus hoazinAegotheles insignisAerodramus orientalis ssp leletensisAerodramus orientalis ssp orientalisAerodramus spodiopygius ssp delichonAerodramus spodiopygius ssp eichhorniAerodramus spodiopygius ssp noonaedanaeAerodramus spodiopygius ssp reichenowiAerodramus vanikorensis ssp coultasiAerodramus vanikorensis ssp lihirensisAerodramus vanikorensis ssp lugubrisAerodramus vanikorensis ssp pallensCollocalia esculenta ssp beckiCollocalia esculenta ssp disiderataCollocalia esculenta ssp kaliliCollocalia esculenta ssp makirensisCollocalia esculenta ssp spilogasterCollocalia esculenta ssp stresemanniCollocalia esculenta ssp tametameleAerodramus vanikorensisStreptoprocne zonarisHemiprocne mystaceaColibri coruscansPhaethornis griseogularisHemiprocne mystacea ssp aeroplanesHemiprocne mystacea ssp carbonariaHemiprocne mystacea ssp macruraHemiprocne mystacea ssp woodfordianaCaprimulgus longirostrisEurostopodus macrotisBatrachostomus septimusPodargus strigoidesCaprimulgus macrurus ssp yorki Eurostopodus mystacalis ssp nigripennisNyctibius bracteatusNyctibius grandisSteatornis caripensisPodargus ocellatus ssp inexpectatusEurypyga heliasRhynochetos jubatusCaloenas nicobarica ssp nicobaricaChalcophaps stephani ssp mortoniChalcophaps stephani ssp stephaniColumba pallidicepsColumba vitiensis ssp halmaheiraDucula brenchleyiDucula finschiiDucula melanochroaDucula pacifica ssp pacificaDucula pacifica ssp sejunctaDucula pistrinaria ssb pistrinariaDucula pistrinaria ssb rhodinolaemaDucula pistrinaria ssb vanwyckiiDucula rubricera ssp rubriceraDucula rubricera ssp rufigulaDucula spilorrhoa ssp subflavescensGallicolumba beccarii ssp admiralitisGallicolumba beccarii ssp eichhorniGallicolumba beccarii ssp intermediaGallicolumba beccarii ssp johannaeGallicolumba beccarii ssp masculinaGallicolumba beccarii ssp solomonensisGallicolumba jobiensis ssp chalconotaGallicolumba jobiensis ssp jobiensisGallicolumba salamonisGymnophaps albertisii ssp albertsiiGymnophaps albertisii ssp solomenensisHenicophaps foersteriMacropygia amboinensis ssp admiralitatisMacropygia amboinensis ssp cinereicepsMacropygia mackinlayi ssp arossiMacropygia nigrirostris ssp majorPtilinopus greyiiPtilinopus insolitus ssp inferiorPtilinopus insolitus ssp insolitusPtilinopus richardsii ssp cyanopterusPtilinopus richardsii ssp richardsiiPtilinopus rivoli ssp rivoliPtilinopus solomonensis ssp ?Ptilinopus solomonensis ssp ambiguusPtilinopus solomonensis ssp bistictusPtilinopus solomonensis ssp johannisPtilinopus solomonensis ssp meyeriPtilinopus solomonensis ssp neumanniPtilinopus solomonensis ssp ocularisPtilinopus solomonensis ssp solomonensisPtilinopus solomonensis ssp vulcanorumPtilinopus superbus ssp superbusPtilinopus virides ssp eugeniaePtilinopus virides ssp lewisiReinwardtoena browni ssp browniReinwardtoena browni ssp solitariaReinwardtoena crassirostris Columba liviaGeotrygon montanaTreron vernansColumbina passerinaOtidiphaps nobilisMicrogoura meekiMesitornis unicolorMonias benschiPterocles namaquaSyrrhaptes paradoxusPhaethon lepturusPhaethon rubricaudaPhoenicopterus chilensisPodiceps auritusTachybaptus novaehollandiae ssp rennellianusTachybaptus ruficollis ssp collarisAlectura lathamiMegapodius eremitaColinus cristatusCoturnix coturnixGallus gallusRollulus rouloulNumida meleagrisCrax alectorCoturnix chinensis ssp lepidaMegapodius freycinet ssp eremitaAnas gibberifrons ssp remissaAnas superciliosa ssp pelewensisDendrocygna arcuata ssp pygmaeaDendrocygna guttataAnas platyrhynchosAythya americanaBiziura lobataAnser erythropusMalacorhynchus membranaceusOxyura jamaicensisAnseranas semipalmataChauna torquataAciceda subcristata ssp gurneyiApteryx australisCasuarius casuariusDromaius novaehollandiaeCrypturellus souiTinamus guttatusEudromia elegansNothoprocta perdicariaRhea americanaCasuarius bennettiStruthio camelusRhyticeros plicatus ssp dampieriRhyticeros plicatus ssp hartertiRhyticeros plicatus ssp mendanaeTurnix maculosa ssp salomonisTurnix maculosa ssp saturataAlligator mississippiensisGavialis gangeticus

To beautify this, we could remove the species names, and still get a sense of what the
tree looks like. To do this type:

> plot(fulltree, show.tip.label = FALSE)

209

Notice the polytomies, which would be correspond to families or genera for which there is
little molecular data in the reference/published phylogeny. Think about how this might
impact results.

We can also visualize the distributions of species from a particular island on the full
phylogeny (Compare this to section 3 of the picante walkthrough). A similar thing was
done in the picante walkthrough. Lets’ try it for one island here. First, we need to prune
out species not found in at least one community. The tree does contain species in the
molecular tree that are not in the Islands studied.

> prunedtree <- prune.sample(birds, fulltree)

We also need to make sure the species are arranged in the some order in the community
data and the phylogeny. This is an important step - several functions in picante assume
that the community or trait data and phylogeny data have species arranged in the same
order, so it’s good to always make sure we’ve done so before running any analysis. The
following command sorts the columns of samp to be in the same order as the tip labels
of the phylogeny

210CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

> birds <- birds[, prunedtree$tip.label]

Now, we can identify the birds found on a particular island on the phylogeny to visually
inspect the phylogenetic distribution of those birds. To see the distribution for the 2nd
island in the list, type:

> plot(prunedtree, show.tip.label=FALSE)
> tiplabels(tip=which(birds[2,] >0), pch=19, cex=2)

●
●

●
●●
●

●

●●
●
●

●●
●

In the command above, The number after birds[dictates which island is being plotted.
You could try plotting di↵erent islands on the tree, to get a sense of the data (change
the number after birds[)

> plot(prunedtree, show.tip.label=FALSE)
> tiplabels(tip=which(birds[80,] >0), pch=19, cex=2)

211

●
●

●

●

●●
●●

●
●●●
●
●●●
●●

●

The number after cex determines the size of the dots depicting the species, and the
number after pch determines which graphic shape will be used. Is this distribution
clustered or over-dispersed? How does the 1 passerine (at the bottom of the tree) influence
the statistic?

Now imagine we want to know which island contains the most phylogenetic diversity.
One of the earliest metrics of eco communities is PD (Faith, 1992) PD is defined as the
total branch length spanned by a tree that connects all the species in a community.

> pd.result <- pd(birds, prunedtree, include.root=FALSE)
> pd.result

PD SR
1_Anchorites 114.00000 8
1_Credner 147.16667 14
1_Crown 312.91667 31
1_Duke_of_York 525.90000 55
1_Dyaul 399.01667 46

212CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

1_Emirau 258.33333 24
1_Feni 371.16667 38
1_Hermits 159.33333 16
1_Lihir 533.26667 58
1_Lolobau 451.18333 52
1_Long 552.66667 54
1_Manus 481.30000 51
1_Nauna 198.66667 20
1_New_Britain 1063.02917 126
1_New_Hanover 670.48333 74
1_New_Ireland 848.75833 102
1_Ninigos 177.33333 15
1_Rambutyo 313.71667 29
1_Sakar 335.58333 36
1_San_Miguel 154.33333 13
1_St._Matthias 379.91667 40
1_Tabar 535.51667 59
1_Tanga 384.16667 38
1_Tench 146.66667 13
1_Tingwon 151.91667 13
1_Tolokiwa 405.25000 42
1_Umboi 700.68334 81
1_Unea 208.80000 19
1_Vuatom 517.96666 55
1_Witu 316.43333 30
1_Wuvulu 178.66667 17
2_Bagga 111.25000 10
2_Banika 431.10000 42
2_Bellona 220.66667 19
2_Borokua 173.00000 13
2_Bougainville 811.58333 99
2_Buena_Vista 409.96667 40
2_Buka 611.51667 70
2_Choiseul 671.85000 74
2_Fauro 482.80000 49
2_Fead 131.00000 10
2_Florida 531.76667 58
2_Ganonga 513.46667 53
2_Gatukai 547.88333 57
2_Gizo 572.35000 59
2_Gower 272.66667 26
2_Guadalcanal 885.33334 102
2_Kilinailau 37.00000 4

213

2_Kohinggo 546.68333 59
2_Kulambangra 708.91667 81
2_Malaita 644.43333 71
2_Mono 449.25000 44
2_New_Georgia 622.18334 68
2_Nissan 311.66667 32
2_Nukumanu 64.00000 4
2_Ontong_Java 116.00000 8
2_Pavuvu 428.60000 43
2_Ramos 192.00000 17
2_Rendova 583.35000 63
2_Rennell 418.88334 39
2_San_Cristobal 664.85000 77
2_Santa_Anna 451.25000 44
2_Santa_Catalina 401.08333 38
2_Savo 342.46667 34
2_Shortland 502.63333 54
2_Sikaiana 81.00000 5
2_Simbo 396.55000 39
2_Tau 33.33333 3
2_Tetipari 524.35000 55
2_Three_Sisters 388.66667 39
2_Ugi 479.71667 49
2_Ulawa 321.46667 32
2_Vangunu 580.51667 64
2_Vella_Lavella 585.35000 64
2_Wana_Wana 529.35000 57
2_Ysabel 705.43333 79
3_Australia 175.00000 14
3_Celebes 88.00000 6
3_Lesser_Sundas 84.00000 5
3_Moluccas 233.66666 19
3_New_Guinea 396.16666 35
3_New_Hebrides 112.00000 8
3_New_Zealand 59.00000 5
3_North_Caledonia 104.00000 7
3_Philippines 116.00000 7

SR is ”species richness” the number of species on each island Let’s see how PD relats to
SR

> plot(pd.result$SR, pd.result$PD)

214CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

PD has been proposed as a metric for conservation prioritization. let’s find the row with
the highest PD:

> pd.result[pd.result$PD==max(pd.result$PD),]

PD SR
1_New_Britain 1063.029 126

So New Britain might be a target for conservation based on PD (and SR) But what if
the cost of conservation is proportional to island size? We have island size data. Let’s
find the ratio of PD to Island size to see which island has the most PD for its size

The goal is to merge the pd.results with the data on island size in geo We can do this
with the merge function because each object has the island names in it. However, the
results from the PD function have islands as row names and the merge command needs
to match 2 columns.

Let’s take the row names (Islands) from pd.result and put them in a temporary object.

> row.names(pd.result)->Island
> Island

[1] "1_Anchorites" "1_Credner" "1_Crown"
[4] "1_Duke_of_York" "1_Dyaul" "1_Emirau"
[7] "1_Feni" "1_Hermits" "1_Lihir"

[10] "1_Lolobau" "1_Long" "1_Manus"
[13] "1_Nauna" "1_New_Britain" "1_New_Hanover"
[16] "1_New_Ireland" "1_Ninigos" "1_Rambutyo"
[19] "1_Sakar" "1_San_Miguel" "1_St._Matthias"
[22] "1_Tabar" "1_Tanga" "1_Tench"
[25] "1_Tingwon" "1_Tolokiwa" "1_Umboi"
[28] "1_Unea" "1_Vuatom" "1_Witu"
[31] "1_Wuvulu" "2_Bagga" "2_Banika"
[34] "2_Bellona" "2_Borokua" "2_Bougainville"
[37] "2_Buena_Vista" "2_Buka" "2_Choiseul"
[40] "2_Fauro" "2_Fead" "2_Florida"
[43] "2_Ganonga" "2_Gatukai" "2_Gizo"
[46] "2_Gower" "2_Guadalcanal" "2_Kilinailau"
[49] "2_Kohinggo" "2_Kulambangra" "2_Malaita"
[52] "2_Mono" "2_New_Georgia" "2_Nissan"
[55] "2_Nukumanu" "2_Ontong_Java" "2_Pavuvu"
[58] "2_Ramos" "2_Rendova" "2_Rennell"
[61] "2_San_Cristobal" "2_Santa_Anna" "2_Santa_Catalina"

215

[64] "2_Savo" "2_Shortland" "2_Sikaiana"
[67] "2_Simbo" "2_Tau" "2_Tetipari"
[70] "2_Three_Sisters" "2_Ugi" "2_Ulawa"
[73] "2_Vangunu" "2_Vella_Lavella" "2_Wana_Wana"
[76] "2_Ysabel" "3_Australia" "3_Celebes"
[79] "3_Lesser_Sundas" "3_Moluccas" "3_New_Guinea"
[82] "3_New_Hebrides" "3_New_Zealand" "3_North_Caledonia"
[85] "3_Philippines"

Next add those names as a column to the pd.result matrix

> new.pd.result <- cbind(Island, pd.result)

Now we can merge the PD result with the geographic data

> PDandGeo <- merge(new.pd.result, geo)
> head(PDandGeo)

Island PD SR Area..km2. Height..m.
1 1_Anchorites 114.0000 8 0.52 0
2 1_Credner 147.1667 14 1.00 0
3 1_Crown 312.9167 31 14.00 566
4 1_Duke_of_York 525.9000 55 52.00 0
5 1_Dyaul 399.0167 46 110.00 180
6 1_Emirau 258.3333 24 41.00 0

Distance.to.the.nearest.Island..km.
1 174
2 8
3 10
4 13
5 14
6 17

First, out of interest, let’s look at the relationship between PD and Island Area

> plot(PDandGeo$Area, PDandGeo$PD)

216CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0 5000 10000 15000 20000 25000 30000 35000

0
20
0

40
0

60
0

80
0

10
00

PDandGeo$Area

PD
an
dG

eo
$P
D

This might be easier to see on a log log plot

> plot(log(PDandGeo$Area), log(PDandGeo$PD))

217

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

0 2 4 6 8 10

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

log(PDandGeo$Area)

lo
g(
PD

an
dG

eo
$P
D
)

Out of interest, let’s try the same thing for height

> plot(PDandGeo$Height, PDandGeo$PD)

218CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0 500 1000 1500 2000 2500

0
20
0

40
0

60
0

80
0

10
00

PDandGeo$Height

PD
an
dG

eo
$P
D

Back to the question of the ratio of PD to Island size:

Let’s calculate that ratio and put the result into a new column:

> PnG <- cbind(PDandGeo, PDandGeo$PD/PDandGeo$Area)

Now we’ll find the maximum value of the ratio, and pull out the row the max is in to get
the Island name Let’s change the names to make it easier to find

> names(PnG) <- c("Island", "PD", "SR", "Area", "Height", "Distance", "ratio")
> max(PnG$ratio)

[1] NA

There are null values in the column, and it takes its as max

> max(PnG$ratio, na.rm=TRUE)

219

[1] 593.5897

> PnG[PnG$ratio==max(PnG$ratio, na.rm=TRUE),]

Island PD SR Area Height Distance ratio
20 1_San_Miguel 154.3333 13 0.26 0 26 593.5897
NA <NA> NA NA NA NA NA NA
NA.1 <NA> NA NA NA NA NA NA
NA.2 <NA> NA NA NA NA NA NA
NA.3 <NA> NA NA NA NA NA NA
NA.4 <NA> NA NA NA NA NA NA
NA.5 <NA> NA NA NA NA NA NA
NA.6 <NA> NA NA NA NA NA NA
NA.7 <NA> NA NA NA NA NA NA
NA.8 <NA> NA NA NA NA NA NA
NA.9 <NA> NA NA NA NA NA NA
NA.10 <NA> NA NA NA NA NA NA
NA.11 <NA> NA NA NA NA NA NA
NA.12 <NA> NA NA NA NA NA NA
NA.13 <NA> NA NA NA NA NA NA
NA.14 <NA> NA NA NA NA NA NA
NA.15 <NA> NA NA NA NA NA NA
NA.16 <NA> NA NA NA NA NA NA
NA.17 <NA> NA NA NA NA NA NA
NA.18 <NA> NA NA NA NA NA NA

So, Manus island has the highest PD for its size

Let’s try another community metric besides PD. MPD is the ”Mean Phylogenetic Dis-
tance” of the species in the community. This metric uses a distance matrix unlike PD,
which used the phylogeny directly. We first can get a pairwise distance matrix based on
the phylogeny

> phydist <- cophenetic(prunedtree)

Then we can calculate MPD, along with a statistical analysis of whether the taxa in the
community (island) are more clustered or overdispersed than random this is a large tree,
and the randomization takes some time. for now, let’s just do 10 replications. In practice,
1̃000 is better for a published analysis

> MPD <- ses.mpd(birds, phydist, null.model="taxa.labels", abundance.weighted=FALSE, runs=10)

Let’s take the row names (Islands) from MPD and put them in a temporary object.

220CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

> row.names(MPD)->Island
> Island

[1] "1_Anchorites" "1_Credner" "1_Crown"
[4] "1_Duke_of_York" "1_Dyaul" "1_Emirau"
[7] "1_Feni" "1_Hermits" "1_Lihir"

[10] "1_Lolobau" "1_Long" "1_Manus"
[13] "1_Nauna" "1_New_Britain" "1_New_Hanover"
[16] "1_New_Ireland" "1_Ninigos" "1_Rambutyo"
[19] "1_Sakar" "1_San_Miguel" "1_St._Matthias"
[22] "1_Tabar" "1_Tanga" "1_Tench"
[25] "1_Tingwon" "1_Tolokiwa" "1_Umboi"
[28] "1_Unea" "1_Vuatom" "1_Witu"
[31] "1_Wuvulu" "2_Bagga" "2_Banika"
[34] "2_Bellona" "2_Borokua" "2_Bougainville"
[37] "2_Buena_Vista" "2_Buka" "2_Choiseul"
[40] "2_Fauro" "2_Fead" "2_Florida"
[43] "2_Ganonga" "2_Gatukai" "2_Gizo"
[46] "2_Gower" "2_Guadalcanal" "2_Kilinailau"
[49] "2_Kohinggo" "2_Kulambangra" "2_Malaita"
[52] "2_Mono" "2_New_Georgia" "2_Nissan"
[55] "2_Nukumanu" "2_Ontong_Java" "2_Pavuvu"
[58] "2_Ramos" "2_Rendova" "2_Rennell"
[61] "2_San_Cristobal" "2_Santa_Anna" "2_Santa_Catalina"
[64] "2_Savo" "2_Shortland" "2_Sikaiana"
[67] "2_Simbo" "2_Tau" "2_Tetipari"
[70] "2_Three_Sisters" "2_Ugi" "2_Ulawa"
[73] "2_Vangunu" "2_Vella_Lavella" "2_Wana_Wana"
[76] "2_Ysabel" "3_Australia" "3_Celebes"
[79] "3_Lesser_Sundas" "3_Moluccas" "3_New_Guinea"
[82] "3_New_Hebrides" "3_New_Zealand" "3_North_Caledonia"
[85] "3_Philippines"

Next, lets add those names as a column back into MPD matrix

> MPD <- cbind(Island, MPD)
> PnG <- merge(PnG, MPD)
> head(PnG)

Island PD SR Area Height Distance ratio ntaxa mpd.obs
1 1_Anchorites 114.0000 8 0.52 0 174 219.230771 8 32.50000
2 1_Credner 147.1667 14 1.00 0 8 147.166666 14 29.18132
3 1_Crown 312.9167 31 14.00 566 10 22.351190 31 30.95591

221

4 1_Duke_of_York 525.9000 55 52.00 0 13 10.113461 55 31.61140
5 1_Dyaul 399.0167 46 110.00 180 14 3.627424 46 30.26454
6 1_Emirau 258.3333 24 41.00 0 17 6.300813 24 31.73913

mpd.rand.mean mpd.rand.sd mpd.obs.rank mpd.obs.z mpd.obs.p runs
1 28.95929 1.5706963 11 2.2542323 1.00000000 10
2 30.50513 0.6800313 1 -1.9466897 0.09090909 10
3 29.59191 1.2300569 11 1.1088975 1.00000000 10
4 29.91005 0.8700440 11 1.9554770 1.00000000 10
5 29.46159 0.8516380 9 0.9428263 0.81818182 10
6 29.89727 1.3100318 10 1.4059658 0.90909091 10

the columns are the MPD stat and the deviations from the null (in this case random
shu✏es)

Now, let’s compare the level of phylogenetic dispersion of each community to the height
of the island where the community resides.

> plot(PnG$Height, PnG$mpd.obs.z)

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

0 500 1000 1500 2000 2500

−2
0

2
4

PnG$Height

Pn
G
$m

pd
.o
bs
.z

222CHAPTER 19. PHYLOGENETIC COMMUNITY ANALYSIS BY TODDOAKLEY

How about island area?

> plot(log(PnG$Area), PnG$mpd.obs.z)

●

●

●

●

●

● ●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

0 2 4 6 8 10

−2
0

2
4

log(PnG$Area)

Pn
G
$m

pd
.o
bs
.z

Chapter 20

Writing Simple Packages by Jason
Pienaar and Marguerite Butler

The easiest way to start making a package is to use the package skeleton function:

> f <- function(x,y) x+y
> g <- function(x,y) x-y
> d <- data.frame(a=1, b=2)
> e <- rnorm(1000)

> package.skeleton(list=c("f","g","d","e"), name="mypkg")

This will make a package directory in your working directory called mypkg. This is a
good option if the package is very small. However, if you are building up a number
of functions, you will want to save all of your functions to a folder, and then run the
package skeleton directly on the files in that directory. For example, if our files for the
package phylohelper are in a folder called ”ourpackage”, then in a terminal window,
change directory to inside ”ourpackage”, then run the command:

> package.skeleton(name="phylohelper", code_files=list.files(), force=T)

Three elements are required:

DESCRIPTION a file

R your source code

man the help file directory

223

224CHAPTER 20. WRITING SIMPLE PACKAGES BY JASON PIENAARANDMARGUERITE BUTLER

Every named function and dataset in R requires a help page or listing as an alias on a
help page. The package skeleton creates templates, you simply have to fill them with
your information.

There are also optional directories:

data included datasets

demo demonstrations

exec

inst (see below)

po

src C code or code in other languages

tests developer provided code tests

Optional files:

INDEX

NAMESPACE (discusssed in a later session)

configure script files executed before installation on Unix-alikes

cleanup script files, after installation on Unix-alikes if ”–clean” was given as argument

LICENSE/LICENCE/COPYING copy of GNU public license, GPL-2, etc. Refer
to the copies on http://www.r-project.org/Licenses or with base package in
directory share/licenses.

NEWS see conventions in http://www.gnu.org/prep/standards/standards.html#
Documentation.

README and ChangeLog are ignored by R but useful for users

20.1 Cross-platform compatibility

• Avoid using file names containing ASCII control characters as well as ” * : / <

> ? backslash and |.

• Avoid using filenames containing con, prn, aux, clock$, nul, com1 -- com9,
and lpt1 -- lpt9.

http://www.r-project.org/Licenses
http://www.gnu.org/prep/standards/standards.html#Documentation
http://www.gnu.org/prep/standards/standards.html#Documentation

20.2. DESCRIPTION FILE 225

• Avoid filenames in the same directory which only di↵er by upper/lower case.

• Names of ‘.Rd’ (help) files must be ASCII and not contain %.

• No spaces in file names

• It is a good idea to avoid shell metacharacters (){}’[]$

20.2 Description File

The entire file should be written in ASCII, and continuation lines must start with a space
or tab.

Mandatory elements: Package, Version, License, Description, Title, Author, and Main-
tainer. All else is optional.

Package The package name should start with a letter and be only contain only al-
phanumeric and ’.’ characters.

Version Version number should have the form ’0.1-0’.

Description Can be multi line but only one paragraph.

Title short description of package (sometimes truncated to 65 char).

Author package writer

Maintainer A single name

Optional:

Date optional, but use yyyy-mm-dd format.

Depends comma-separated list of package names which the current package requires.
Particular versions or comments are enclosed in parentheses (with version number).

Imports optional, lists packages whose namespaces are imported but don’t need to be
attached. See Writing R Extensions. Any name spaces accessed by ”::” or ”:::” need
to be listed in depends, imports, or suggests, as R uses this info to decide which
additional packages to install or reinstall (esp. important for S4 classes, as their
class definitions may be evolving).

Suggests packages that are not necessarily needed, for example if they are only used in
examples of vignettes, or packages loaded in the body of particular functions.

226CHAPTER 20. WRITING SIMPLE PACKAGES BY JASON PIENAARANDMARGUERITE BUTLER

Enhances lists packages ”enhanced”by your package, if you are writing additional meth-
ods for their classes.

Rules of thumb: Imports if you only need the namespace to load the package. Depends
much stronger — need the package to be attached to successfully load the package. Will
be loaded when your package is loaded. Suggests includes all packages needed to pass
R CMD check (i.e., packages used anywhere at all in the package, no matter how obscure
or infrequently). Use suggests especially in the case where you’re only using the datasets
from the package.

Optional fields:

Collate can be used to control the collation order for R code files when they are con-
catenated into a single file upon installation from source. If present, must list all R
code files in package.

LazyLoad and LazyData control whether the R objects use lazy-loading. If using the
methods package, should specify ‘LazyLoad: yes’.

20.3 Other directories

demo (optional) contains (.R) scripts for demonstrating some features. Run using the
demo() command. If present, must contain a ’00Index’ file with one line for each demo
giving its name and a description separated by a white space.

inst The contents of this optional directory will be copied recursively into the installation
directory. Happens after src is build so its Makefile can create files to be installed. May
want to add a CITATION file for the citation function. tests is a subdirectory for test
code. Usually tests of specific functions within the package.

20.3.1 Documentation

All named R objects (data, functions) must be referenced either by having a page of its
own ("
name{}") or being mentioned on another page ("
alias{}"). There is only one name per .Rd file, but there can be many aliases (this is
a means of grouping together related functions).

The package skeleton will create a separate file for each object that you have included.
You may want to delete some of them if they are redundant (as a rule of thumb, help
directories with over 40 pages or so become a bit overwhelming for users to browse
through).

If you want to add additional help files, use the command:

20.4. CHECKING THE ENTIRE PACKAGE 227

> prompt(object.name, file="test.Rd")

The object name and the file need not share the same name.

20.3.2 Vignettes

Package vignettes are included in a subdirectory (inst/doc). When they are placed here,
R CMD check checks all code chunks (but not those with eval=F. Once the packages is
installed, the vignette is inserted into doc directory. Make sure all files needed by the
vignetter are accessible by placing them in the inst/doc hierarchy of the source package
or using calls to system.file(). See the Sweave chapter for instructions and examples
for writing Sweave documents.

20.4 Checking the entire package

Change to a terminal window, and move to the directory directly above the start of
the package directory tree. We can use the R CMD check command on the package as
follows:

R CMD check PACKAGENAME

This will print a number of diagnostic tests as well as build a version of the package
(in the same directory that the package is in). Run the example and have a look at all
the diagnostics, it should OK everything, if there was a problem we would get an error
message pointing us to the likely source of the error.

It is also possible to check single documentation files using

R CMD Rd2txt help.page.name.Rd

20.5 Building the package

The next step is to build the package using the R CMD build command. This will create
a tar file which can then be distributed as a (hopefully) functional package:

R CMD build PACKAGENAME

To install this package on your machine use the R CMD install command:

228CHAPTER 20. WRITING SIMPLE PACKAGES BY JASON PIENAARANDMARGUERITE BUTLER

R CMD INSTALL PACKAGENAME

20.6 Distributing the package

20.6.1 CRAN

CRAN is the main repository for R packages. It is a mirrored-network of web sites that
store the R distributions, User manuals as well as contributed packages.

One way to distribute you package is to submit it to the CRAN network so that anybody
can download and use it. The R package must have passed R CMD check. The R CMD
build command makes the .tar.gz release file. When all the testing has been done, the
tar.gz file can be uploaded to ftp://cran.r-project.org/incoming/, using “anonymous” as
a user name and your email address as a password. Also send an email a message to
CRAN@R-project.org. The CRAN maintainers will run further tests on your package
before putting the submission in the main package archive.

20.6.2 R-forge

For developing packages, R-forge http://r-forge.r-project.org/ is a good choice for
hosting. R-forge has svn capabilities, so multiple developers can simultaneously work on
a package and curious users can download and test it.

20.6.3 Creating Binaries

It is possible to build binaries on your computer by using the command:

R CMD build -binary PACKAGENAME

Note however, that this will be specific to your architecture and OS.

http://r-forge.r-project.org/

Chapter 21

System Commands by Brian
O’Meara

R can interact with non-R code in at least two ways. One is with commands for direct
passing of objects to and from other code: see .C, .Call, and .External. These are for
calling functions, rather than programs. To speed up execution, many packages move
some operations from R code to C code (ape does this, for example, as does phylobase
for NEXUS file reading) and they use one of these functions (perhaps hidden in a helper
package) to call that C code. These functions require access to the C or other external
code and an understanding of objects in R and the target language. Thus, they won’t
work if you want to, say, call paup, which is closed source, or if you just want to run
MrBayes without modifying the code to work with R. system is a command that will
run commands in the shell. This function is common in programming languages: you
can find it in Perl, PHP, C, C++, Java, and probably others (it’s often called system or
exec).

The basic function is

system(command, intern = FALSE, ignore.stderr = FALSE, wait = TRUE, input = NULL)

(there are other functional options on other systems – we’re just focusing on Mac OS X).

command is just a text string containing the command. If you can do it in Terminal, you
should be able to do it from R.

> system(command = "ls -l")

> system(command = "cal")

Just this basic function alone is terrifically handy. For example, Christoph Heibl (http://
www.christophheibl.de/) has functions that can create NEXUS files (just using write),

229

http://www.christophheibl.de/
http://www.christophheibl.de/

230 CHAPTER 21. SYSTEM COMMANDS BY BRIAN O’MEARA

then use system to start MrBayes, Garli, or other programs, then use ape’s tree reading
functions to load the trees back into R. See his page at http://www.christophheibl.
de/r.html for these and other useful scripts. The basic idea is to create an input file,
run the relevant program using system, and then load the output file back into R. The
only gotcha here is to make sure the command will run properly: for example, MrBayes
has a command line executable called mb (di↵erent from the double-clickable icon). The
computer only knows that typing ”mb”means you want to run this program if mb resides
in an area where the computer looks for executables (such as /usr/bin) or you pass the
computer the full path to the executable (such as /Users/bcomeara/Desktop/mb if the
executable is on the desktop).

The wait option tells R to wait for the command to finish (if true, the default) or
immediately go to the next line in your R batch file (or back to the command prompt)
after starting the command. Normally, you do want to wait for the command to finish:
for example, if you want to run paup to find a tree, then load the tree back into R, it
makes sense to wait for paup to finish its search and save the tree to a file before trying
to load that file. In some cases, you might want to start the command running and not
wait for it to finish.

> system(command = "ls -lh /usr/bin > ~/Desktop/ls.txt", wait = F)

This command will list all the items in the /usr/bin directory with their file sizes and
modification times and store this info in a file on the desktop. You could imagine using
this sort of command to store a list all the output files in a working directory for future
reference – it might take a little while to run, but you don’t depend on the results in R,
so waiting for the command to finish before moving on is just a waste of time.

This is actually a way to run your computer as a mini high performance computing cluster.
Most computers now have multicore processors (”Intel Duo” is dual core). Mac laptops
often have two cores. Some desktops may have up to 8. These are treated almost like sep-
arate CPUs (though with shared memory), so an R session just runs on one of these cores
(a relative handful of programs have been written to run on multiple cores simultaneously;
as far as I can tell, R isn’t one of them). If you have N cores, and want to do, say, 100 boot-
strap replicates, you could divide these into sets of 100/N replicates. Then, N -1 of these
sets could be set to run using system(command="R CMD BATCH batchfileReplicate1.R", wait=F)
and the last set could be run in the main program. Thus, you would be running N op-
erations at once rather than just one at a time, taking 1/N as long.

So far, the results have not come back directly to R, but are just stored in whatever
output files the command creates. intern=T configures system to return output from
the function directly (and implicitly sets wait=T).

> myfiles <- system(command = "ls", intern = T)

The output is now stored in myfiles:

http://www.christophheibl.de/r.html
http://www.christophheibl.de/r.html

231

> myfiles

which we can see is a vector:

> class(myfiles)

[1] "character"

> length(myfiles)

[1] 139

Incidentally, if intern=F, the system function actually does return information: 256
times the return code of the command.

The input argument passes its contents a vector of character strings, element by element
to lines in a temporary file. This file is passed to the command as an input.

As a somewhat silly example, pass this vector

> chorus <- c("It's a long way from Amphioxus.", "It's a long way to us.",
+ "It's a long way from Amphioxus to the meanest human cuss.",
+ "Well, it's goodbye to fins and gill slits, and it's welcome lungs and hair!",
+ "It's a long, long way from Amphioxus, but we all came from there.")

to the command line application grep (yes, it’s also an R function).

> amphioxuslines <- system(command = "grep -i amphioxus", intern = T,
+ input = chorus)
> amphioxuslines

[1] "It's a long way from Amphioxus."
[2] "It's a long way from Amphioxus to the meanest human cuss."
[3] "It's a long, long way from Amphioxus, but we all came from there."

which returns just the lines with the word Amphioxus.

232 CHAPTER 21. SYSTEM COMMANDS BY BRIAN O’MEARA

21.1 Exercises

1. Store a vector listing all the items on your desktop

2. Create a batch file in NEXUS format to get a list of command options in MrBayes.
Use R to run MrBayes with this batch file

3. Download some sequences from Genbank within R, export them to fasta format,
run clustalw to align them, and then import them back into R

Chapter 22

Other Packages Available For
Comparative Analysis

22.1 ade4

Here is a description from Thibaut Jombart, one of the package developers. ade4 is a
package for ecological data analysis within a phylogenetic context.

ade4 is soon to undergo a major revision to handle phylo4d objects. This will likely take
the form of a new project adephylo, that I will start after September 2008. What is for
(quite) sure is that everything that currently exist for comparative methods in ade4 will
be available and improved in adephylo, along with some news.

Meanwhile, here is a small summary of what is currently available. Please do not hesitate
if you have further questions.

newick2phylog this is the input function which reads character strings and outputs
a phylog object (described in ?phylog). This is the main way to create a phy-
log object, which is the class used in ade4. Other related input functions are
hclust2phylog and taxo2phylog. Objects of class phylog have optional compo-
nents that can take a large amount of space. To disable this, use add.tools =
TRUE in the input function. Ape imports phylog using as.phylo.

plot.phylog tree plot from phylog object

table.phylog this is the main graphical function for tree+data, quite similar to that for
phylo4d objects in phylobase. Note that phylog does not possess data, so the
represented dataset has to be specified to the function. orthogram implements the
orthogram described by Ollier, S. et al. (2005) Biometrics, *62*, 471-477. This
method decomposes the variance of a trait into several components, representing

233

234CHAPTER 22. OTHER PACKAGES AVAILABLE FOR COMPARATIVE ANALYSIS

di↵erent ’levels’ (i.e. sets of nodes sharing the same common ancestor) of the phy-
logeny. There are 4 associated tests that can detect di↵erent kinds of phylogenetic
structuring. variance .phylog performs a phylogenetic version of the classical
ANOVA.

There is no function to perform the test of Abouheif, yet the neighbouring matrix under-
lying Abouheif’s test is the $Amat component of a phylog and can be used to compute
a Moran’s I, which the test of Abouheif truely is.

I think these are the main features. There is a ML which can be used by your students
if they have questions about ade4:
adelistcisrweb.univ-lyon1.fr@

22.2 geiger

22.3 picante

http://picante.r-forge.r-project.org/

caic is coming soon!

http://picante.r-forge.r-project.org/

Bibliography

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer, Sunderland, Mass.

Harvey, P. H. and M. D. Pagel. 1991. The Comparative Method in Evolutionary Biology,
volume 1 of Oxford Series in Ecology and Evolution. Oxford University Press, Oxford.

Martins, E. P., editor. 1996. Phylogenies and the Comparative Method in Animal Be-
havior. Oxford University Press.

Paradis, E. 2006. Analysis of Phylogenetics and Evolution with R, volume XII of Use R.
Springer-Verlag.

235

	Preliminaries
	Computer Requirements and Installing R
	Installing from source

	R packages
	General R References
	Help! and Useful References
	general R help

	For Folks who get serious about R programming

	Playing with R for the first time
	Instructions
	R session
	Vectors

	Functions
	Generating Random Deviates
	Building a dataframe

	Save Your History
	Insert Comments
	Exercises

	Simple Comparative Analyses in R
	Why use comparative methods (and a bit about how they work)
	Running simple comparative analyses using ape: or a tour through R using phylogenetic examples
	Getting help
	Directories and File organization
	Course Directory Organization
	Moving through the directories

	Running Independent Contrasts using ape
	The Brownian Motion Model of Evolution
	Phylogenetic GLS
	Ancestral Reconstruction Methods

	Finding Help
	When you know the name of the function
	Don't know the name of the function
	Package-specific help

	Creating Data Objects and Plotting
	Data objects
	Simple plotting
	Bivariate plot
	Univariate plot

	Saving your work as R scripts
	Script template
	Writing pdf to file
	History file

	Remember the workspace
	Exercises

	The Workhorse Functions of Data Manipulation
	Indexing and subsetting
	Vectors
	Matrices and Dataframes
	Lists

	String Matching
	Ordering Data
	Matching
	Merging
	Reshaping R Objects

	Data Input and Output
	Getting your data into R
	read.csv

	Summary statistics on your data
	merge

	write.csv
	save
	Saving plots
	pdf

	Messier input files
	Input files generated by data loggers

	All about trees by Brian O'Meara
	Tree objects
	Newick
	phylo (ape 1.9 or above)
	ouchtree
	phylo4 (phylobase)

	Getting trees into R
	Using ape
	Using phylobase

	Going from one format to another
	Exercises

	Working with Trees by Michael Alfaro
	Introduction
	Getting Started
	Basic Tree Plotting
	Tree Structure
	More Tree Plotting Tricks
	Tree Input and Output
	Reading Trees
	Plotting Support Symbols on Trees
	Writing Trees
	Manipulating Tree Labels and Branch Lengths
	Miscellaneous Tree Commands

	Ancestral State Reconstructions by Graham Slater
	Verification: Computing Phylogenetic GLS "by hand"
	Sweave
	The Notion of Reproducible Results
	A bit about LaTeX
	Simple Sweave
	Sweave -> LaTeX
	LaTeX -> pdf
	Stangle
	Best Practices
	Exercises

	S3 vs. S4 Objects
	What is an object?
	Object example: A Medieval Video Game (remember Dungeons and dragons?)
	S3 Classes
	No Validation
	Methods dispatch

	S4 Classes
	What are the differences for users?

	Phylobase
	Some Useful Features
	Accessing help
	Creating Objects
	Tree and Data Formats
	phylo4
	phylo4d

	Accessing Internal Elements of S4 Objects
	Subsetting
	Treewalking
	Example: Generating a set of trees with simulated branch lengths
	Branch lengths drawn from a common distribution
	Branch lengths drawn from normal distributions with separate means

	Stochastic Simulations
	Brownian motion model
	Exercises
	Making movies
	RGL graphics

	Introduction to OU Models
	The OU Model for Comparative Analysis
	Introduction to Likelihood
	ouch
	The Data
	Plotting ouchtrees
	Fitting models
	hansentree and ouchtree methods
	painting regimes on trees

	Bivariate ouch
	The Bivariate model
	No Correlations

	Correlated Evolution
	Implementation in ouch
	Exercises
	Variations of the OU Model — Brian?

	Phylogenetic Community Analysis by Todd Oakley
	Writing Simple Packages by Jason Pienaar and Marguerite Butler
	Cross-platform compatibility
	Description File
	Other directories
	Documentation
	Vignettes

	Checking the entire package
	Building the package
	Distributing the package
	CRAN
	R-forge
	Creating Binaries

	System Commands by Brian O'Meara
	Exercises

	Other Packages Available For Comparative Analysis
	ade4
	geiger
	picante

	Bibliography

