
Marguerite Butler
mbutler808@gmail.com

R Bootcamp:

Dataframe access & What is it?

Tim Tam

Dept. of Biology
University of Hawaii

mailto:mbutler808@gmail.com

“Atomic” basic types for the single
element. (can’t break it down any further).

numeric

character

logical

R object types

All objects have class, mode and length (the number of
vector elements; everything is a vector in R)
names are optional

Derived : combinations of atomic types
or with special attributes

“Atomic” basic types for the single
element. (can’t break it down any further).

numeric

character

logical

factor

dataframe

custom-programmed
Derived : combinations of atomic types
or with special attributes

R object types

All objects have class, mode and length (the number of
vector elements; everything is a vector in R)
names are optional

Derived objects can have attributes such as:

dim (dimensions -- number of rows, columns)

row.names

(other programmer-defined attributes)

R object types
Vector: a one-dimensional array of arbitrary

length.

Matrix: a two-dimensional array with an arbitrary
number of rows and columns.

Array: as a matrix, but of arbitrary dimension
(i.e., more than 2).

Data frame: a set of data organized similarly to a
matrix. However each column of the data frame
may contain its own type of data. Columns
typically correspond to variables in a statistical
study, while rows correspond to observations of
these variables.

Function: a set of commands that are packaged
into a unit with defined input and output (I/O is
not necessary, though).

List: an arbitrary collection of other R objects
(which may include other lists).

> attributes(x) <- NULL
> x # now just a vector of length 6

[1] 1.000000 2.000000 3.000000 3.141593
3.141593 3.141593

> class(x) # vector is default mode
[1] "numeric"

> x <- cbind(a=1:3, pi=pi) # simple
matrix w/ dimnames

> x
 a pi
[1,] 1 3.141593
[2,] 2 3.141593
[3,] 3 3.141593

> class(x)
[1] "matrix"

> attributes(x)
$dim
[1] 3 2

$dimnames
$dimnames[[1]]
NULL

$dimnames[[2]]
[1] "a" "pi"

How does R store data?

R can save information in variables or objects

Assignment works by two types of operators:

Equal sign: right side stored in left side

> x = 6 (put 6 into x)

Arrow: assignment direction follows arrow

> x <- 6 (put 6 into x)

> 6 -> x (put 6 into x)

> 6 = x (error! cannot put x into 6)

In R, there are drawers for:

Numbers

Characters (alphabetical strings)

Logical (TRUE or FALSE)

Complex Numbers (don’t worry)

Create a new drawer by
creating a name, and shoving a
value into it - R will assign the

“type” or “mode”

values

names

> x <- 25
valuename

> mode(x)
[1] "numeric"

How does R store data?

values

names

Object

Bureaus can come in
different shapes

Object

Vector Matrix Data Frame

attributes: length dimensions(5 rows, 3 columns)

Rectangular!

all columns have same length

How does R store data?

values

names

Object

Bureaus can come in
different shapes

Object

Vector Matrix Data Frame

All values same type

numeric vector

or

character matrix

etc.

character numeric
e.g. species size, mass

“ record format”

How does R store data?

values

names

Object

Bureaus can come in
different shapes

Object

Data Frame

values in each vector
same type,

but vectors can be
different types

 character

vector

numeric

vector

species

name

“record format”

One row = one observation

size massFor example:
numeric

vector

How does R store data?

input output

Object

Bureaus can come in
different shapes

Vector Matrix Data Frame
“ record format”

List

[1] vector

[2] vector

[3] data.frame

a “list” of objects

- offers more flexibility

- often used for model output

- R has many functions that

operate on lists

All of these are
classes of objects

Functions

5 25

How does R store data?

Common Sources of Error

1) Typos! Computers are very anal that way.
> length = 6 # is not the same as

> lengths = 6

2) R is case sensitive
> length != Length

3) Using () when should use [] and vice versa
> mean(x) # use () for functions

> mean[x] # error

> x[5] # select an element of a vector, matrix, data.frame, etc.

> x(5) # error

4) No comma or comma in the wrong place
> x[5,3] # fifth row, third column of x

> x[5 3] # error

> x[5,3,] # error

Common Sources of Error

5) Forgetting quotes for character strings (R will assume it’s
another named object or variable)

> treatment = c(“a”, “b”, “c”)

> treatment == a # error - R thinks a is another object

What is it?

mode : the atomic data type (class = mode if
object is atomic)

class : classes can be derived or atomic --
(and which methods are applied to the object
are determined by its class)

numeric

character

logical

factor

dataframe

custom-programmed

When working with a new package,

you want to know what kind of objects you are dealing with:

A common source of error is trying to input

the wrong class of object

into a function

Accessing parts of your dataframe

Data Frame
“ mydat”

1 2 3

1

2

3

4

5

columns

rows
“species” “size” “mass” names

can also have rownames

by index: mydat[row #, column #]
> mydat[2, 1] # row 2, col 1

> mydat[2,] # entire row 2

> mydat[, 1] # entire first col

by name:

> mydat[, “species”] # species col

> mydat[“species”] # same

> mydat[2, “size”] # row 2, col 2

using $:
> mydat$species # species col

> mydat$mass # mass col

How matters, because of Inheritance

What is it?

Data Frame

 Psst: A dataframe is a list of vectors

using the [] method gets a subset
of the dataframe = smaller dataframe

using the $ method grabs a vector
from inside the dataframe = vector

> mydat$species # species col

The class of the new object depends on HOW you grab it

Classes are inherited

vector
> mydat[2, 1]

> mydat[, “species”]

[[]] method: grabs the first level
element “inside” the dataframe = vector

> mydat[[1]] # first column

outside
inside

