
R Bootcamp: Getting Started in R for Biologists

Marguerite A. Butler

Department of Zoology, University of Hawaii, Honolulu, HI 96822

mbutler@hawaii.edu

January 29, 2018

2

Contents

1 Preliminaries 7

1.1 Computer Requirements and Installing R 7

1.1.1 Installing from source . 7

1.2 R packages . 8

1.3 General R References . 8

1.4 Help! and Useful References . 9

1.4.1 general R help . 9

1.5 For Folks who get serious about R programming 9

2 R Environment 11

2.1 Programming Environment . 11

2.2 Why code? . 11

2.2.1 Reproducible Results . 12

2.2.2 Customized Analyses . 12

2.2.3 Improving your Logic . 12

2.3 R Works in RAM . 13

2.4 Parts of the R Environment . 13

2.4.1 R workspace . 13

2.4.2 R session and R working directory 13

2.4.3 Two special files . 14

2.4.4 R program directory . 14

3 Playing with R for the first time 17

3

4 CONTENTS

3.1 Instructions . 17

3.2 R session . 18

3.2.1 Vectors . 18

3.3 Functions . 21

3.3.1 Generating Random Deviates . 22

3.3.2 Building a dataframe . 26

3.4 Save Your History . 28

3.5 Insert Comments . 28

3.6 Exercises . 28

4 Finding Help 31

4.1 When you know the name of the function 31

4.2 Don’t know the name of the function . 32

4.3 Package-specific help . 33

5 Creating Data Objects and Plotting 35

5.1 Data objects . 35

5.2 Simple plotting . 38

5.2.1 Bivariate plot . 38

5.2.2 Univariate plot . 39

6 What is it? 43

7 Saving your work as R scripts 47

7.1 Script template . 48

7.1.1 Writing pdf to file . 49

7.1.2 History file . 50

7.2 Remember the workspace . 51

7.3 Exercises . 51

8 Data Input and Output 53

CONTENTS 5

8.1 Getting your data into R . 53

8.1.1 read.csv . 53

8.2 Summary statistics on your data . 55

8.2.1 merge . 56

8.3 write.csv . 57

8.4 save . 57

8.5 Saving plots . 58

8.5.1 pdf . 60

8.6 Messier input files . 61

8.6.1 Input files generated by data loggers 61

9 The Workhorse Functions of Data Manipulation 65

9.1 Indexing and subsetting . 65

9.1.1 Vectors . 66

9.1.2 Matrices and Dataframes . 68

9.1.3 Lists . 72

9.2 String Matching . 73

9.3 Ordering Data . 74

9.4 Matching . 75

9.5 Merging . 78

9.6 Reshaping R Objects . 80

10 Writing your own functions 85

10.1 Functions are wrappers for code that you want to reuse 85

10.2 Arguments . 86

10.3 Order of arguments . 87

10.4 Arbitrary numbers of arguments . 88

10.5 Return value . 91

10.6 Looking inside R: functions that are inside packages 92

10.7 Scope . 93

6 CONTENTS

10.8 Search Paths and Environment . 94

10.9 Exercises . 96

11 All About Data 97

11.1 Raw data to ”curated” data . 97

11.1.1 Reading in fixed width format . 99

11.1.2 Combining the data into one file 100

11.1.3 Adding variables to the data . 101

11.1.4 Sort by species and sex . 104

11.1.5 Editing data into R format . 104

11.1.6 Getting statistics by species and sex 106

Workarounds for broken code . 107

12 A Small Tour of Some Multivariate Methods in R 111

12.1 Principal Components Analysis . 112

12.2 Canonical Discriminant Analysis . 120

13 Answers to Exercises – Creating Data Objects 125

14 Answers to Exercises – The Workhorse Functions of Data Manipulation135

15 Answers to Exercises – Writing your own functions 145

15.1 Exercises . 145

Chapter 1

Preliminaries

1.1 Computer Requirements and Installing R

This chapter is about the software we will be using in class. If you’ve installed these
software a long time ago, please update to recent versions to avoid compatibility issues.

Computers I will be using a macintosh running El Capitan (OS 10.11.6), however, R
is open source and available on PC and Linux as well. For the most part, the R
commands are cross-platform compatible. The only exceptions are those that deal
directly with other programs on your computer (the main one being to bring up a
new graphics window – quartz() on a mac, and x11() on a PC or Linux).

R version 3.4.0 (Amusingly nicknamed ”You Stupid Darkness”. The later versions in a
series usually have bug fixes). You can install R from the binaries available at the R
website http://www.r-project.org. They are available as disk images and very
straightforward to use. On the left Menu bar, click on“CRAN”(the Comprehensive
R Archive Network). Choose a mirror (the closest geographically), then click on
your operating system (MacOS X) and click on R-3.4.0.pkg. Follow the directions
from there.

1.1.1 Installing from source

If you would like to be able to install packages from source, you will need these compo-
nents: C compiler (gcc), a fortran compiler (e.g., gfortran), and X11. If you don’t know
what this is about, it’s OK – just skip it. If you do want to do it, take a look at the
instructions on: http://cran.r-project.org/bin/macosx/tools

Xcode Tools This contains the C/C++ compiler. Install from the system disks that

7

http://www.r-project.org
http://cran.r-project.org/bin/macosx/tools

8 CHAPTER 1. PRELIMINARIES

came with your computer. If you don’t have the disks, you can also download it
from the Apple Developers site after signing up for a free account.

gfortran Install from the link above (tools directory on the CRAN install page).

X11 Comes with OS X, but it may be an optional install.

You can find detailed instructions on how to install these software components and links
to the software itself at the R website , under FAQ’s > R for Mac OS X FAQ > Building
R from sources.

Note: for people who’ve recently upgraded their systems, please make sure you have
Xcode Tools and X11 installed from the discs that came with your computer (they have
to be the correct version for your new OS. For example, you can’t use your Xcode Tools
from Tiger on your mac running Snow Leopard).

1.2 R packages

Many of the packages that you will ever use are available on CRAN. The easiest way to
install from CRAN is to do it from within R. From the ”Packages & Data” menu option,
choose ”Package Installer”. You may have to choose a mirror if you haven’t done so
already (choose a geographically close one). The package installer should open up with
“CRAN (binaries)” already selected. Click on “Get list”, which will refresh the menu with
all the available packages and the version numbers that you have installed. Highlight the
packages that you want to install, choose “Install Dependencies” then click on “Install
Selected”. You can also download the packages from the R website, on the left menu bar
click on CRAN.

Install the following from CRAN (binaries):

ggplot2

pspline

ks

1.3 General R References

An introduction to R A comprehensive and easy-to-follow tutorial produced by the
R Development Core Team.

R for Beginners A tutorial by Emmanuel Paradis.

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

1.4. HELP! AND USEFUL REFERENCES 9

1.4 Help! and Useful References

1.4.1 general R help

Jonathan Baron’s R help page Bookmark this page! It is the best search engine to
find R help. It searches the huge archives of the R-help listserv as well as all R
documentation pages. For more technical help, you can also include the R-dev
(developers) listserv in the search.

1 page R reference card by Jonathan Baron.

4 page R reference card by Tom Short.

1.5 For Folks who get serious about R programming

Programming with Data: A guide to the S Language by John M. Chambers. 2004.
Springer. This is written by one of the authors of the S language, which R is based on.
It has a lot of details that you will never find in the glossy books.

http://finzi.psych.upenn.edu/
http://www.psych.upenn.edu/~baron/refcard.pdf
http://www.rpad.org/Rpad/R-refcard.pdf

10 CHAPTER 1. PRELIMINARIES

Chapter 2

R Environment

2.1 Programming Environment

R is an open-source (and free) programming environment for statistical computing and
graphics. It also has facilities for basic database programming and good string search
and replacement facilities which means that it is excellent for reshaping data. It has
quickly become the platform of choice for many biologists. It is also extensible with
many contributors world-wide writing their code as “packages” that can be shared with
the rest of the R community.

The fact that it is a bonafide programming language with the ability to define data
objects, to write functions and control structures for program loops, in combination
with the matrix math facilities make it very useful for customizing inferential models
and simulations. It also produces beautiful graphics that can also be customized and
reproduced precisely. It has a great many tools for those interested in data analysis,
exploration, and graphical representation.

2.2 Why code?

Learning to code well involves a lot of practice. It is like learning a new foreign language.
You will not get better by doing it once a week. You must practice every day, and you
must type it (not just cut and paste), so that your brain has the opportunity to become
familiar with putting together the line of code with the proper syntax (the “grammar”
if you will). So when you are cursing at the screen late at night, remember why it is so
important - Reproducible Results, Customized Analyses, and Improving your Logic.

11

12 CHAPTER 2. R ENVIRONMENT

2.2.1 Reproducible Results

This is the idea that if you archive your analysis and look at it 6 months or a year later,
that you will be able to reproduce precisely all of your results and graphics. With the
advent of “point and click” statistical software, many powerful tools are available to a
wide variety of users. However, these kinds of GUI (Graphical User Interface) platforms
do not promote reproducibility, because users typically lose track of what they did to the
dataset, what precise steps they implemented, and in what order. It can be very stressful
to try to retrace those steps when your results don‘t match an earlier version!

A coding language with input and output files, files for code, and organized use of direc-
tory structures can really help reproducibility. With every data analysis project create a
directory with:

Raw data files These are input files, and should be archived and never changed. If
there are a lot of files, you may want to include a subfolder or subdirectory for
data.

Script files These are the files that contain your code. Any code that manipulates the
data should be included and documented here. A primary step is to get your raw
data into the format needed for your analysis. Then your code for your analysis,
and finally creating the output files and any figures.

Output files These generally include any tables of output data and figures. Often you
will have a directory for figures if there are a number of them. Sometimes you may
want to save a ”clean data file” as a ready-to-go cleaned up version that you may
use in other R scripts.

2.2.2 Customized Analyses

Parametric statistical procedures are wonderful when your data meet their assumptions,
but often we want to go beyond what is available. R encourages users to customize their
models to suit their data, not the other way around. In addition, there are many times
in which we want to employ simulations to explore the error structures we assume, or
the power if our analyses to find significant associations. R provides powerful facilities
for randomization tests and simulations.

2.2.3 Improving your Logic

It‘s a funny thing, no matter how well you understand your work before you write about
it, it seems that going through and actually writing that manuscript really helps to reveal
what is truly significant about your work. You just see things that you didn‘t appreciate

2.3. R WORKS IN RAM 13

before. It is the same with coding. Forcing yourself into a a very rigorous expression of
your data analysis reveals logical comparisons and helps you to see what is really and
truly robust and important in your study system as explanatory factors. It also helps
you to see what is not significantly associated. It helps you to grow intellectually.

2.3 R Works in RAM

Your entire R session - the workspace and all computations are held in RAM. On the
one hand this makes R very fast, however if your computer crashes you lose all of your
work. It is important that you save your working lines of code in a script. Make a habit
of saving each line of code as you go in a script file that you name meaningfully and save
with a “.R” extension. Do make sure that if you are on a Mac or a PC that your file
viewing preferences are set to show all extensions.

Those of us with older 32-bit machines will be limited to R workspaces that take up
about 2GB or less. However, most computers nowadays are 64-bit machines, which will
only be limited by the size of the RAM chips you purchased, which are often in excess
of 2GB. Most of us will not notice any size limitation in our R sessions, but if you are
doing a very large spatial or phylogenetic analysis you should take be aware of the size
of your data objects and needs.

2.4 Parts of the R Environment

2.4.1 R workspace

When you start up R, running the program will occupy a portion of your RAM called the
workspace. The workspace contains whatever you load into it: any data, any functions
or packages, any code you enter or load, any objects or variables that you create, and
contains your processed computations. The R workspace is the virtual “space” occupied
in RAM by running the R program, and everything in it will no longer exist at the end
of your R session when you shut down R. The R workspace refers to the virtual space
occupied by your activities in R (the objects), whereas the R session refers to timeframe
during your activities in R, or one bout of using the R environment.

2.4.2 R session and R working directory

Your R session begins when you start up R and ends when you shut it down. Upon
start, R will treat your current hard drive location as your R working directory, the place
where R is “parked”. R will look for any ”.Rdata” file in this working directory and load
the data from that file into your workspace. The working directory will be the default

14 CHAPTER 2. R ENVIRONMENT

location where R will look for external data. So if you ask R to load data from an external
file, it will look in the working directory unless you give it the full path to your file.

By default, the working directory on a Mac and Unix/Linux systems is your home user
directory“ ”. On a PC the default working directory is where your R program is installed
“C:\Program Files\R\R version \bin”. This is not where you want all of your work to
be stored, so please establish a working directory on your hard drive where you will save
all of your personal work: your scripts, your data, and your output. Make a directory
for this class. I would recommend naming it “Rclass” and putting it at some accessible
location in your user directory (like at the top level of your User directory on a Mac, or
at C:\ on a windows machine).

You can start R within your desired working directory by putting an R script in there
and starting R by double clicking the script file there. Or you can navigate to it
from within R by using the setwd(path to working directory) function, for example
“setwd("~\Rclass")”.

2.4.3 Two special files

At the end of your R session, R will ask you if you want to save your workspace. If you
say yes to the question “Save workspace image”, it will save all of the objects in your
workspace into the hidden file “.Rdata”. If you are like me and do a lot of trial and error
before settling on the right way to do an analysis, this is generally not a good idea. I
usually say no. If I do want to save some data objects, I save the specific ones I want
manually and giving them names I can remember using the save() function.

Automatically R will save a “.history” file in your working directory, which contains
a history of every command that you typed during your R session, and possibly your
previous sessions. Looking at this after a session can be useful for starting a script file.
You can also create a script file on your own.

Note that both the .Rdata and the .history files are hidden files meaning that you
can‘t see them ordinarily in your folders because they start with a “.” However, they are
still there and R will look at them on startup.

2.4.4 R program directory

When you download and install R software from CRAN, it will be saved on your hard
drive. You should never touch these files, but only add to the packages using the R
install.packages() function or the Package Installer menu item from within the R ap-
plication. In case you‘re curious, on a Mac the R software is stored in a directory outside of
all user directories, from the computer‘s root directory: “/Library/Frameworks/R.framework/Versions/Current/”.
The R application is here under “R”, and the packages that you‘ve installed are stored in
the “Resources/library” subdirectory.

2.4. PARTS OF THE R ENVIRONMENT 15

On a PC, R is stored at “C:\Program Files\R\R version \bin”. For reasons that I‘ll
never understand when you start R on a PC, the default save location for all user files is
right in the middle of this R program file directory. Never use this location to save your
personal work! It is a recipe for corrupting your R installation. Make a separate working
directory for yourself somewhere else.

16 CHAPTER 2. R ENVIRONMENT

Chapter 3

Playing with R for the first time

3.1 Instructions

In this exercise, I want to introduce you to some of the built-in help facilities and docu-
mentation in R, and get you started with manipulating variables in R.

• If you haven’t already done so, make a directory for this class. I would recommend
naming it “Rclass” and putting it at some accessible location in your user directory
(like at the top level of your User directory on a Mac, or at C:/ on a windows
machine). On my computer it would be like so: Fig. 3.1.

• Also within this directory, make another directory called ”data”. You will store all
of your data files in there.

• Start up R.

• Move to your Rclass directory by using the setwd("path to Rclass ") command.

> setwd("~/Rclass")

On a PC it will be something like:

> setwd("C:/Rclass")

• Open the help facility using the command

> help.start()

• Click on ”An Introduction to R”. The is ”the Bible” for learning R.

17

18 CHAPTER 3. PLAYING WITH R FOR THE FIRST TIME

Figure 3.1: Rclass directory for saving course work. Make a folder in a convenient location
on your computer, like at the top level of your user directory. When you are done with
the course, you can move the whole folder to a permanent location with your other R
code.

3.2 R session

Later, when you have more time, you will want to read and try out all of the section
“Simple manipulations; numbers and vectors” (2.1 – 2.8). Please type the commands in
yourself rather than cut-and-pasting. The typing helps develop ”finger memory” which
you will need to become proficient at programming.

3.2.1 Vectors

For now, let’s try playing around with R. Create a variable or “object” named height

and save a value of 10. The arrow means to put “10” into height:

> height <- 10

To see the value of height, type it and press return:

> height

[1] 10

3.2. R SESSION 19

Now let’s create a vector, a variable with several elements or “observations”:

> height <- c(10, 12, 51, 24, 32)

> height

[1] 10 12 51 24 32

The c() function combines values into a vector or a list. You will use it a lot. Create a
vector of weights:

> weight <- c(40, 41, 50, 43, 64)

> weight

[1] 40 41 50 43 64

Whenever I am writing new code, I ALWAYS check to make sure the code produced the
results I wanted. You should do the same. Verify that EACH step worked correctly. This
means without errors!

Let’s create our first plot. We’ll use the plot() function, which is a generic function for
just about any type of R object:

> plot(height, weight)

20 CHAPTER 3. PLAYING WITH R FOR THE FIRST TIME

●

●

●

●

●

10 20 30 40 50

40
45

50
55

60

height

w
ei

gh
t

Voila!! Our first plot. Beautiful. Now suppose that we have males and females in the
data, so we’d like some categorical variables for sex. In R, it’s easy to do. Just create a
character vector:

> sex <- "male"

> sex

[1] "male"

> sex <- c("male", "male")

> sex

[1] "male" "male"

3.3. FUNCTIONS 21

3.3 Functions

We can create an object sex that contains one or more character strings in it, and use
the generic c() function to create a vector of character strings. But it can get tedious
typing the same thing over. So we can use the rep() function to repeat values:

> sex <- rep("male", 3)

> sex

[1] "male" "male" "male"

> sex <- c(sex, "female", "female")

> sex

[1] "male" "male" "male" "female" "female"

> sex <- c(rep("male", 3), rep("female", 2))

> sex

[1] "male" "male" "male" "female" "female"

So what just happened? Why do the last two lines of code give the same result? In R,
as in most programming languages, the code is nested. The innermost function or bit of
code is evaluated first, and whatever is returned is then the argument for the next outer
bit of code. So in the first line, we take three copies of “male” and shove it into sex.
In the second line, we take the object sex, which is now a vector of three “male”, and
combine it with two copies of “female”, into a vector of 5 elements. In the last line, first
we create a vector of 3 males using the rep function, and then a vector of 2 females, and
combine these two vectors together into a vector of 5 elements.

In fact, the last line above is equivalent to the following (of course you would never
actually write a line like the one below, the nested c() are completely unnecessary, this
is just for demonstration):

> sex <- c(c("male", "male", "male"), c("female", "female"))

> sex

[1] "male" "male" "male" "female" "female"

You can see that using functions like rep() and seq() for sequence can save you a lot
of time, when you have lots of repeated data.

22 CHAPTER 3. PLAYING WITH R FOR THE FIRST TIME

> sex <- c(rep("male", 50), rep("female", 50))

> sex

[1] "male" "male" "male" "male" "male" "male" "male" "male" "male" "male" "male"

[12] "male" "male" "male" "male" "male" "male" "male" "male" "male" "male" "male"

[23] "male" "male" "male" "male" "male" "male" "male" "male" "male" "male" "male"

[34] "male" "male" "male" "male" "male" "male" "male" "male" "male" "male" "male"

[45] "male" "male" "male" "male" "male" "male" "female" "female" "female" "female" "female"

[56] "female" "female" "female" "female" "female" "female" "female" "female" "female" "female" "female"

[67] "female" "female" "female" "female" "female" "female" "female" "female" "female" "female" "female"

[78] "female" "female" "female" "female" "female" "female" "female" "female" "female" "female" "female"

[89] "female" "female" "female" "female" "female" "female" "female" "female" "female" "female" "female"

[100] "female"

3.3.1 Generating Random Deviates

Now let’s go back to our original height and weight variables and make up some larger
samples. This time, let’s use the random number generator function rnorm(), which
generates random normal deviates. We can specify the mean and standard deviation as
below. Let’s make the males with larger mean, but same standard deviation. To save
paper, I’m not going to display the object contents to the screen, but you should keep
doing it.

> height_m <- rnorm(50, mean=55, sd=5)

> height_f <- rnorm(50, mean=45, sd=5)

How do we combine these into one vector?

> height <- c(height_m, height_f)

We could have also created the height vector in one step. While we’re at it, let’s also
make up some data for weight. Let’s pretend that this data is for children in inches and
pounds:

> height <- c(rnorm(50, mean=55, sd=5), rnorm(50, mean=45, sd=5))

> weight <- c(rnorm(50, mean=80, sd=10), rnorm(50, mean=65, sd=8))

In general, it’s best to keep your coding simple, especially when you are learning. Write
clean code that is easy for you to understand. If it takes an extra line, it’s not a big
deal. The computer is VERY fast, you will not slow down your program this way. On
the other hand, you can easily confuse yourself and make BIG MISTAKES by trying to
be too clever.

3.3. FUNCTIONS 23

To plot by sex, we need to do tell R that the object sex contains categories or “factors”.
We do this using the factor() function:

> sex <- factor(sex)

> sex

[1] male male male male male male male male male male male male male male

[15] male male male male male male male male male male male male male male

[29] male male male male male male male male male male male male male male

[43] male male male male male male male male female female female female female female

[57] female female female female female female female female female female female female female female

[71] female female female female female female female female female female female female female female

[85] female female female female female female female female female female female female female female

[99] female female

Levels: female male

sex is now a factor, or categorical variable with two levels. Now we can plot with sex.
Note that in R, when you make a bivariate plot where the first variable is a factor, it
will create a barplot by default. If you put the quantitative variable first, you will get a
scatterplot:

> plot(sex, height, main="plot(sex, height)")

> plot(height, sex, main="plot(height, sex)")

We added titles to the plots with the main="mytitle" argument, which is optional.

24 CHAPTER 3. PLAYING WITH R FOR THE FIRST TIME

female male

35
40

45
50

55
60

65
70

plot(sex, height)

●● ●● ● ●●●● ●●● ● ● ●●● ●●●●● ●● ●●●●● ●● ●●●● ● ●● ● ●● ●●●● ●●● ● ●

● ● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ●● ● ●● ●●● ●● ●●●● ● ●● ●●● ● ●●●●

35 45 55 65

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

plot(height, sex)

height

se
x

Now, let’s run some statistics on our data. Is a child’s weight related to height? We might
want to run a linear regression, which we so using the lm() or linear model function. It
produces a linear model object, let’s save the output as lm.mf:

> lm.mf <- lm(weight ~ height)

There are several ways to give the linear model argument to lm, I prefer to use the
formula representation weight ~height, which is read weight as a function of height.
You can produce the a summary of the regression using summary(). Often, however, you
want to see an anova table:

> summary(lm.mf)

Call:

lm(formula = weight ~ height)

Residuals:

3.3. FUNCTIONS 25

Min 1Q Median 3Q Max

-22.252 -6.624 -1.007 5.587 40.851

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.9385 7.6824 6.500 3.37e-09 ***

height 0.4568 0.1550 2.948 0.004 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 11.12 on 98 degrees of freedom

Multiple R-squared: 0.08146, Adjusted R-squared: 0.07208

F-statistic: 8.691 on 1 and 98 DF, p-value: 0.003998

> anova(lm.mf)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

height 1 1074.6 1074.63 8.6907 0.003998 **

Residuals 98 12118.0 123.65

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Oh wow, there is a very significant effect. But wait! We have boys and girls in the
dataset. We need to add in gender as a covariate:

> lm.mf <- lm(weight ~ sex + height)

> anova(lm.mf)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

sex 1 4045.2 4045.2 44.264 1.707e-09 ***

height 1 282.8 282.8 3.094 0.08173 .

Residuals 97 8864.7 91.4

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

See what happened? Actually, males and females are significantly different, and there
is no relationship between height and weight after accounting for sex. Does this make
sense, given how we generated the data?

26 CHAPTER 3. PLAYING WITH R FOR THE FIRST TIME

Note: Using the “+” between the parameters sex and height means to put them in
as additive factors. If you want to include these as well as interactions, use “*”. For
interactions only (hardly ever done), use “:”. Give it a try. For more explanation, see the
formula help page:

> ?formula

3.3.2 Building a dataframe

The most typical data structure you will use is a dataframe. It is a “record format”
type of layout, with the idea being one row per observation. You may have additional
information or metadata that you want stored with your individual observations. For
example, you may want a unique ID for each individual, and what city they are from,
etc.

Let’s create a unique ID. For some reason, we want each boy numbered from 1 to 50.
Let’s use the seq() function to create a sequence from 1 to 50, and the paste() function
to combine them with “boy”:

> seq(1,50)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[34] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Is the same as:

> 1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

[34] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Paste together with the word “boy”:

> boys <- paste("boy", 1:50, sep="")

> girls <- paste("girl", 1:50, sep="")

> ID <- c(boys, girls)

We separated the two parts of the paste with nothing, “”. We could have separated with
a “.” or whatever we want.

Now let’s create a city object. Suppose we collected 25 observations of each sex in
Honolulu and Santa Barbara:

3.3. FUNCTIONS 27

> city <- c(rep("Hon", 25), rep("SB", 25), rep("Hon", 25), rep("SB",25))

We could also repeat the repeat, since the 25 per city is a repeating pattern:

> city <- rep(c(rep("Hon", 25), rep("SB", 25)), times = 2)

This time we had to use the times= option, which means how many times to repeat the
whole sequence. The other popular option is each=, which repeats element by element.
To see the difference more clearly, try this simple example:

> rep(1:5, times=3)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

> rep(1:5, each=3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

Now let’s save all of our dataset together into one neat dataframe:

> dat <- data.frame(ID, sex, height, weight, city)

> dat

For really large datasets (saving paper here, you can print to screen), we can just look
at the beginning and end of our dataframe:

> head(dat)

ID sex height weight city

1 boy1 male 50.74248 88.83133 Hon

2 boy2 male 46.14909 66.38892 Hon

3 boy3 male 53.56522 63.32075 Hon

4 boy4 male 46.36637 87.32131 Hon

5 boy5 male 50.58725 85.69922 Hon

6 boy6 male 62.62308 67.86794 Hon

> tail(dat)

ID sex height weight city

95 girl45 female 34.83214 68.87919 SB

96 girl46 female 43.03704 78.05635 SB

97 girl47 female 47.72882 71.00597 SB

98 girl48 female 40.86659 78.12755 SB

99 girl49 female 40.81870 73.01877 SB

100 girl50 female 41.40929 63.28541 SB

28 CHAPTER 3. PLAYING WITH R FOR THE FIRST TIME

3.4 Save Your History

At the end of your session, save your session history. On a mac, press the little blue and
yellow history icon and you will see the history sidebar appear. Click on “Save History.”
Give it a file name as below. On a PC, use the savehistory function, read the following
help page :

> ?savehistory

You will want to save it with an informative file name like VecPractice.history. For
example:

> savehistory(file="VecPractice.history")

3.5 Insert Comments

Outside of R, open up your history (in a text editor) and clean up your code. Add
comments to help you remember what this code means. Place them in your history, just
before the relevant section. Comments in R are indicated by the # symbol. Anything to
the right of one or more # is considered a comment, and not executed by R.

3.6 Exercises

Work through the section ”Simple manipulations; numbers and vectors” (2.1 – 2.8) in the
Introduction to R – see top of this chapter for how to find it – and answer the questions
below.

1. What is a numeric vector?
Answer: ## A numeric vector is an ordered collection of numbers.

2. Is ordinary arithmetic (+, -, *, /) on vectors in R done element-by-element or using
matrix math? (to test an example, try or think about x*y where:

x =

(
1
2

)
y =

(
5
1

)
3. What is a sequence?

4. What is an logical value? What is a logical vector?

5. What is a missing value?

3.6. EXERCISES 29

6. What is a character vector?

7. What is an index vector?

30 CHAPTER 3. PLAYING WITH R FOR THE FIRST TIME

Chapter 4

Finding Help

R has great built-in help facilities. Once you get used to R’s syntax (the form of R
functions and data), you will find them incredibly useful.

Every object that comes with the R program is documented in some way – this means
every function, internal dataset, as well as methods and classes (which we won’t have
time to cover).

4.1 When you know the name of the function

Say you want to find the mean of your data, so you guess that there is a function called
mean(). Finding help is easy:

> ?mean

Will bring up the help page, and is equivalent to:

> help(mean)

Notice that as you type help(you start to see the function definition on the bottom of
the console window. It shows you how to call the function (what variables it expects).

Looking at the help page, notice that there are sections (these are common to most help
pages):

Description what it does

Usage the format for calling the function (making it run)

31

32 CHAPTER 4. FINDING HELP

Arguments explanation for each of the arguments, their type, and what they represent

Details more explanation

Value what is returned from calling the function

Author

References

See Also other functions to check out

Examples Often the most valuable section, with examples that actually work. You can
test them out by cutting and pasting into the R console.

There are also hyperlinks in many help documents, to related help pages, so you can
“surf” you way through help.

4.2 Don’t know the name of the function

But first to access the help for a specific function, you need to know what it is called.

Two good options are:

> help.start()

Which will bring up an an html browser, which you can browse. Click on “Packages”,
then “base” if you are looking for a basic function that should be in the base distribution
of R. Click on the package name if you are looking for a function in a package. Browsing
through the help is very useful for beginners.

> help.search("plot")

Will do a “fuzzy” search (i.e., will also match words close in spelling – not exact – to
plot). Of course, replace ”plot” with whatever you are looking for. This function searches
through the full text of the help docs, so for a common word like plot, this will return a
huge list, which you can look through package by package.

4.3. PACKAGE-SPECIFIC HELP 33

4.3 Package-specific help

Packages are generally a set of functions that are loaded from some (hidden) directory
on your computer into active memory, so that you can use them by name. Now that you
know the names of the functions, you can access specific help pages directly. Try the help
page for independent contrasts:

> help(pic)

Here’s a harder example. you might want to know more about the phylogeny plotting
function in ape. If tree is a tree object in ape, you can use plot(tree) to call the
function, so you might think that you can find the help page by using help(plot) or
?plot. However, this brings up the generic plot function which doesn’t say anything
about the one you want (the tree plotting function in ape.

What is going on is that ape has a method set for plotting objects of the class phylo,
so that you don’t have to remember the specific function name. This is actually a
wonderful feature of object-oriented programming, otherwise you would have to remember
thousands of functions, all uniquely named.

So how do we find the one we want? You could try:

> help(plot, package="ape")

But you will see that this doesn’t return anything. This means that the actual plotting
function in ape is named something else, so that there is no function in ape named ”plot”
(R requires all named functions in packages to be documented).

Huh? How does plot() plot a phylogenetic tree when there is no function called plot in
ape? This is an example of a generic function. The function plot is actually a generic,
with different specific functions for different types of objects – R automatically chooses
the correct one by looking at the objects class.

Anyway...

You have a couple more options (in addition to the general options above):

help(package=“ape”) will return the package’s main help page, where you can see
a list of functions, but they are not clickable. Once you locate the name of the
function you can follow up with a help(plot.phylo).

methods(plot) will return all of the methods written for the generic plot call. Looking
through it, you might guess that plot.phylo is the one you want. NOTE: this
only works for S3 methods.

34 CHAPTER 4. FINDING HELP

Chapter 5

Creating Data Objects and Plotting

5.1 Data objects

Now that you have been introduced to R’s data objects, we’ll practice creating them. R
has a rich collection of functions which are very helpful for creating and manipulating
objects, so a bit of code can substitute for whole lot of typing!

The tables below list some helpful functions. Look up help for anything you don’t know.
It will soon start making sense!

commands actions
c(n1, n2, n3) combines elements into an object
cbind(x, y) binds objects together by column
rbind(x, y) binds objects together by row

Table 5.1: Common combine functions used for creating data objects from existing objects

commands actions
seq() generate a sequence of numbers
1:10 sequence from 1 to 10 by 1
rep(x, times) replicates x
sample(x, size, replace=FALSE) sample size elements from x
rnorm(n, mean=0, sd=1) draw n samples from normal distribution

Table 5.2: Functions used for creating sequences and sampling

Factors are categorical data, for example, “large” and “small”, or “blue”, “red”’, and “yel-
low”. Factors may be ordered, which means that the order of the categories has meaning
(like size categories). By default, factors are unordered. Levels are the values (i.e., names
of the categories) that the factor can take.

35

36 CHAPTER 5. CREATING DATA OBJECTS AND PLOTTING

commands actions
vector() create a vector
matrix() create a matrix
data.frame() create a data.frame
as.vector(x) coerces x to vector
as.matrix(x) coerces to matrix
as.data.frame(x) coerces to data frame
as.character(x) coerces to character
as.numeric(x) coerces to numeric
factor(x) creates factor levels for elements of x
levels() orders the factor levels as specified

Table 5.3: Functions used for creating and coercing objects to new type/class

Examples

To get you started, here are some examples. Creating vectors:

> x <- c(1, 5, 7, 14)

> x

[1] 1 5 7 14

> x <- rep(x, times=2)

> x

[1] 1 5 7 14 1 5 7 14

> y <- rnorm(8)

> y

[1] -0.0599902 0.5525935 -1.1080165 -1.0950411 0.6993651 0.7515395 -0.8649139

[8] -2.2238107

> species <- letters[1:4] # special stored data object: lower case letters a - d

> species

[1] "a" "b" "c" "d"

> LETTERS[1:3] # A B C

5.1. DATA OBJECTS 37

[1] "A" "B" "C"

> treatment <- c("high", "med", "low")

> treat <- factor(treatment) # create a factor

> treat

[1] high med low

Levels: high low med

> as.numeric(treat) # coerce to numeric

[1] 1 3 2

> x <- factor(x) # factor

Notice that your work is only saved if you STORE the result in an obect

Creating a matrix:

> xy <- cbind(x,y) # column bind

> xy

x y

[1,] 1 -0.0599902

[2,] 2 0.5525935

[3,] 3 -1.1080165

[4,] 4 -1.0950411

[5,] 1 0.6993651

[6,] 2 0.7515395

[7,] 3 -0.8649139

[8,] 4 -2.2238107

> z <- matrix(1:25, nrow=5) #create a matrix with 5 rows

> z

[,1] [,2] [,3] [,4] [,5]

[1,] 1 6 11 16 21

[2,] 2 7 12 17 22

[3,] 3 8 13 18 23

[4,] 4 9 14 19 24

[5,] 5 10 15 20 25

Creating a data matrix:

> dat <- data.frame(species, x, y)

38 CHAPTER 5. CREATING DATA OBJECTS AND PLOTTING

5.2 Simple plotting

The generic function for plotting in R is plot.

5.2.1 Bivariate plot

When you supply two vectors to plot, is assumes that the first one is the X coordinate, and
the second is the Y. If the first object is a continuous variable, you will get a scatterplot.

> plot(y,x) # continuous variable first - plots as a scatterplot

●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

y

x

However, if the first
object is a factor, you will get a boxplot.

> plot(x, y) # categorical variable first - plots as a boxplot

5.2. SIMPLE PLOTTING 39

1 5 7 14

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

Plot has a huge number of options for changing the symbols (see ?points, color, size
of symbols, axes. labels, adding regression lines or straight lines, etc. Creating multiple
panels on a page, etc. Help pages you may want to visit include ?lines, ?abline, ?par,
?axis.

5.2.2 Univariate plot

To plot a histogram, use:

> hist(y)

40 CHAPTER 5. CREATING DATA OBJECTS AND PLOTTING

Histogram of y

y

F
re

qu
en

cy

−3 −2 −1 0 1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

To plot a bar plot, use:

> barplot(y)

5.2. SIMPLE PLOTTING 41

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

Practice

1. Create a dataset with simulated data using rnorm().

(a) Simulate 21 random data points drawn from a normal distribution (create a
numeric vector), and save it in the variable “y”. Create a second set of 21
points and save it as “y1”.

> y <- rnorm(21)

> y1 <- rnorm(21)

> y

[1] -0.168984468 1.744057572 -0.973792381 2.181253325 -0.271815623

[6] -1.519178459 0.464675948 0.441336004 -1.269421076 -0.473276722

[11] 0.487935722 -0.291422130 -0.165038976 1.998638212 0.305123817

[16] 0.003532067 -0.967991230 -0.355547127 0.331657651 0.162875050

[21] -1.555495898

42 CHAPTER 5. CREATING DATA OBJECTS AND PLOTTING

> y1

[1] 0.41339352 0.82268376 2.30615544 0.63824071 0.80825783 1.07801740

[7] -0.15137476 -1.05348975 -0.21766137 2.60354690 -1.02202193 -0.08451111

[13] -0.76071467 -1.37201083 -0.86821755 -0.27252772 0.38823803 1.06362074

[19] -0.09175088 1.78317876 0.67630249

(b) Create a treatment vector with levels “low”, “med”, and “high”, save it as a
factor.

> treatment <- factor(c("low", "med", "high"))

> treatment

[1] low med high

Levels: high low med

(c) Our treatment has numeric values also, so create a numeric vector with the
values 2, 4, 8, save it as x.

(d) Create a species vector with seven names.

(e) Create a matrix with y in the first column and x in the second column, save
it as dat.matrix.

(f) Create a data frame with species, x, treatment, y and y1, save as dat. Why
can’t you make a matrix with these columns?

(g) Make a bivariate plot of the numeric value of the treatment (x) versus the
response (y). You may want to check the help documentation for ”plot”. You
will have to select the columns of the data frame.

(h) Make a plot on the treatment as factor versus the response. What is the
difference between these two plots?

(i) Is the factor displayed in the plot in the order that makes sense? If not, fix
this by applying factor to the treatment column of dat again, but this time
specifying the levels vector with names of the levels in the order you want.
You may want to look at the help page for factor. Plot it again.

(j) Let’s make a scatterplot (plot(y, y1)) to see if there is any structuring in the
data (eventually with respect to the treatment levels – the rest of this exercise
is in the chapter on Workhorse Functions of Data Analysis). While we’re at
it, let’s make it prettier. Change the symbols to solid circles by adding the
optional parameter pch=16, and the points bigger by cex=2. Change the color
to red using col="red".

(k) Now let’s make some data which should differ. For the ”low” treatment, sim-
ulate y and y1 as normally distributed data with mean = -2 and sd=.5, and
”high” as mean=5, and sd=3. Remake the dataframe.

(l) Now make two boxplots: treatment vs. y and treatment vs. y1.

(m) Make boxplots of species vs. y and species vs. y1. Why would you make this
plot?

Chapter 6

What is it?

When working with a new package, you want to know what kind of object you are dealing
with. Check its class and attributes.

To illustrate, let’s make up some data:

> x <- 1:9

> x

[1] 1 2 3 4 5 6 7 8 9

> class(x)

[1] "integer"

x is a numeric vector. Vectors have length, but not dimension:

> length(x)

[1] 9

> dim(x)

NULL

However, we can easily change it into a matrix by giving it row and column dimensions.
This has to be specified as a vector with number of rows, number of columns, here made
with the combine function: c(3,3)

43

44 CHAPTER 6. WHAT IS IT?

> dim(x) <- c(3,3)

> x

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> class(x)

[1] "matrix"

Let’s make a data frame, and name it dat

> species <- LETTERS[1:3]

> species

[1] "A" "B" "C"

> dat <- data.frame(species, x)

> dat

species X1 X2 X3

1 A 1 4 7

2 B 2 5 8

3 C 3 6 9

Conveniently, the name“species”was correctly assigned to the first column of the dataframe,
but the columns from x were given default names (because the columns of x did not have
names to begin with). So let’s replace these with more meaningful names:

> names(dat)

[1] "species" "X1" "X2" "X3"

> names(dat) <- c("species", "length", "width", "height")

> dat

45

species length width height

1 A 1 4 7

2 B 2 5 8

3 C 3 6 9

Alternatively, we could have given column names to x and before making the dataframe:

> x

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> colnames(x) <- c("length", "width", "height")

> x

length width height

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> dat <- data.frame(species, x)

> dat

species length width height

1 A 1 4 7

2 B 2 5 8

3 C 3 6 9

We can see all attributes of dat

> attributes(dat)

$names

[1] "species" "length" "width" "height"

$row.names

[1] 1 2 3

$class

[1] "data.frame"

46 CHAPTER 6. WHAT IS IT?

A vector has no dimension. So it’s easy to turn x from a matrix back to a vector by
getting rid of its dimensions. NULL is a special R variable.

> dim(x) <- NULL

> x

[1] 1 2 3 4 5 6 7 8 9

> class(x)

[1] "integer"

Another useful ”What is it” function is str for structure, which nicely summarizes what
it is:

> str(dat)

'data.frame': 3 obs. of 4 variables:

$ species: Factor w/ 3 levels "A","B","C": 1 2 3

$ length : int 1 2 3

$ width : int 4 5 6

$ height : int 7 8 9

Chapter 7

Saving your work as R scripts

Chapter Topics:

• Building good scripts

• Running source code

• Debugging scripts

• Clearing your workspace

Skills: writing clean source code, verifying, using print and cat, using history files.

Because R is interactive, it is tempting to simply play with code until you get the results
you want. The problem with this is that you may not be able to reproduce it. Also,
you may have made many manipulations of your data, some of which you’ve lost track
of, and so your data objects may not really be what you think they are. This makes it
impossible to double-check your analysis.

A key part of any analysis is verification:

1. Did you do what you really think you did?

2. Was the input free of error?

3. Did the steps of your analysis work without error?

4. And perhaps most importantly – can you reproduce it?

To be able to accomplish these goals, you want to create clean scripts. Scripts are lines
of code saved in an ordinary text file with a .R or .r ending. (Make sure it is plain text,
and NOT a .rtf, or a .doc, etc file).

All good script follows the first three R’s, as you increase along the path of R jedi-hood,
you will add on the 4th R:

47

48 CHAPTER 7. SAVING YOUR WORK AS R SCRIPTS

1. Readable – If you look at the script in a month or 6 months, will you be able to
easily understand it?

2. Right – Does it run free of error, and does it produce correct results?

3. Repeatable – Can you reproduce your results from your input data?

4. Reusable – Is your coding modular and designed well so that your code can interact
with other scripts, and/or use it for other purposes?

The mac interface has a very nice text editor. From the R menu, choose File > New
Document (or command-N). Simply type or cut and paste your code from your history
file into here. Let’s make a script for the analyses we’ve done thus far.

7.1 Script template

First, make sure that you are in the directory that you want the script to execute from
(Rclass). Start off with any packages that you wish to load, then begin to cut and paste
your code. Make sure to add comments indicated by the # symbol so that you know what
the code does:

Here is the basic structure of a script:

> require(...addonpackage...) # anything between ... needs to be changed

> # if none, then you don't need that line

>

> dat <- read.csv(..."your input file.csv"...) # input data

>

> # Your lines of code to run analyses

> # You may have output or processed data that you want to save,

> # create an object for it and write it out to a csv file at the end

>

> # plot graphics

>

> write.csv(out, file="myoutput.csv") # output data

And here is a simple example script that reads in data, calculates summary statistics, a
linear regression, and a couple of figures.

> #require(stats) # stats is part of the base package and doesn't need to be loaded,

> # but if you need an add-on package, you would require it here.

>

> dat <- read.csv ("Data/morphpre.csv") # read in data

7.1. SCRIPT TEMPLATE 49

> lm.HLSVL <- lm(dat$HandL ~ dat$SVL) # run a linear model

> summary(lm.HLSVL) # get summary statistics

> str(lm.HLSVL) # look at the linear model object

> coef(lm.HLSVL)[2] # get the slope of the regression

> plot(dat$HandL ~ dat$SVL, cex=2) # make a plot with big dots (cex controls size of symbols)

> abline(lm.HLSVL, col="red") # plots the regression line, in red

> title("Microhylid Hand Length vs Body Size") # add a title

> text(x=15, y=13, paste("slope = ", coef(lm.HLSVL)[2]))

> # add important info to the text

+

+ ###

+ # please insert your other lines of code here -- enough

+ # to save a meaningful analysis

+ ###

Note that I have used spacing and indents to increase the “readability” of the code. Use
it to set of blocks of code that accomplish one task, with indents to indicate heirarchy.
We will talk more about this in the functions section.

Save the script file as ”testScript.R” or an appropriate title in your Rclass folder. Now
if you want to run the code, you simply type at the R console (from within your Rclass
directory):

> source("testScript.R")

When I am trying to develop a script, I often work by having the script window open
next to the R console, and once a bit of code is working, I cut and paste it directly into
the script. Save the script and source it. Once you have a good amount of code, you can
work by making changes to the script, saving, and sourcing, over and over again.

7.1.1 Writing pdf to file

If you’d like to print your pdf to a file instead of to the screen, you can add the following
code into your script:

> pdf(file="MicrohylidHandLvsSize.pdf") # open pdf device for printing

> plot(dat$HandL ~ dat$SVL, cex=2) # remake plot as before

> abline(lm.HLSVL, col="red")

> title("Microhylid Hand Length vs Body Size")

> text(x=15, y=13, paste("slope = ", coef(lm.HLSVL)[2]))

> dev.off() # turn off pdf device so future plots go back to screen

50 CHAPTER 7. SAVING YOUR WORK AS R SCRIPTS

7.1.2 History file

Another handy feature of R is that it automatically saves a history file. That is, a file
that has a list of every command you’ve executed in your sessions. It is saved by default
as .history in your working directory. Because the file name begins with a period, it
is not visible normally (although it is there – you can see it from the terminal by using
the ls -a command). To save it explicitly with your own filename, either click on the
history button on the R gui (box with yellow and blue lines), and click on ”save history”
at the bottom of the side window, or type the code:

> savehistory(file = "date_today.Rhistory")

This is an ordinary text file, which you can open up and edit (removing all the mistakes),
and save as a scriptname.R file.

Another helpful tip when writing source code is to use print and cat functions to print
out your output to the console. When you are using R in interactive mode, when you
type the name of a variable, you get a print of its contents. However, when you source
the same code, the variable does not print to the screen. You have to explicitly put a
print or cat function around it.

Let’s use a built-in dataset called iris, which is the famous Fisher iris dataset. Make a
test script file and save it as test.R:

> names(iris) # will not print to console when sourced

> spp <- unique(iris$Species) # only unique values

> spp <- as.character(spp) # factor -> character

> spp # will not print to console when sourced

> print('Species names') # will print

> print(spp) # will print

> cat('\n', 'Species names =', spp) # concatenate

> # \n is a carriage return character

> summary(iris)

Then test it by running:

> source("test.R")

[1] "Species names"

[1] "setosa" "versicolor" "virginica"

Species names = setosa versicolor virginica

7.2. REMEMBER THE WORKSPACE 51

You can see that print just makes a rough dump of the variables onto the screen. I added
a character string so that we would know what variable was being printed to screen. cat
makes a nicer, more customized display (it turns everything into a character vector, then
pastes them together [i.e., concatenates them] before printing). They both do the same
basic job, however. Notice also that summary does print to screen. Usually you only need
to use these explicit print statements to see the contents of your variables as you are
debugging.

7.2 Remember the workspace

Finally, remember that R is interactive, and the objects you create during a session are
still around even after you’ve run your source code and forgotten about them. So to really
check that your script is complete, you should shut down R (don’t save the workspace),
double click on the name of your script to restart R in the correct directory, and then
source the program again. Does it work? Great!!

You could also try clearing all the objects from your workspace using the command:

> rm(list=ls()) # remove a list of objects consisting of the entire workspace

But this doesn’t unload your packages, and there is still a danger that the script won’t
run in a fresh session. It’s OK for minor incremental changes, but the best thing for a
real test is to quit R and retry with a blank slate.

In general, most of my analyses are pretty quick in terms of computer time (not pro-
gramming time!). So I never save my workspace, because I don’t want to deal with any
“ghost” objects I have forgotten about. Instead, I write a nice script that will generate
the whole analysis. If it’s a really big complex analysis, you can save intermediate output
as r data files (more on this later).

Try to create a script file for all the analyses we’ve done so far (and for every session
throughout the course).

7.3 Exercises

1. Create a script of the work we’ve done so far.

2. R has great diagnostic plots for linear models. Read about them in the help page
for ?plot.lm and incorporate a multi-panel figure by adding two lines of code to the
script you’ve already made:

52 CHAPTER 7. SAVING YOUR WORK AS R SCRIPTS

> par(mfrow = c(2,2)) # set the plot environment to have two rows and two columns

> plot(lm.HLSVL)

3. Save output to a file.

4. Modify ’test.R’ so that a summary of the iris data prints to the console when
sourced.

5. Explore other datasets in R. At the R command prompt type data() to see what
is available.

Chapter 8

Data Input and Output

So far, we have been working within R, either typing data in directly or using R’s functions
to generate data. In order to analyze your own data, you have to load data from an
external file into R. Similarly, to save your work, you’ll probably want to write files from
R to your hard drive. Both of these require interacting with your computer’s operating
system. In this chapter, we’re just going to do it. We’ll talk more about what’s going on
in a later section on the R Environment.

8.1 Getting your data into R

The most convenient way to read data into R is using the read.csv() function. This
requires that your data is saved in .csv format, which is possible from Microsoft Excel
(save as... csv) or any spreadsheet format. It is a text format with data separated by
commas. It is very nice because it is unambiguous, not easily corruptible, and non-
proprietary. Thus it is readable by nearly every program that reads in data.

First, within your “Rclass” folder, create a folder named“Data”. Copy the file “anolis.csv”
and “Iguanamass.csv” into this folder.

Next, from within R, check which working directory you are in. You should be in your
Rclass folder. If you are not, use setwd() to get there.

> getwd()

> setwd("~/Rclass") # my folder is at the top level of my user directory

8.1.1 read.csv

Getting the file in is easy. If it is in csv format, you just use:

53

54 CHAPTER 8. DATA INPUT AND OUTPUT

> read.csv("Data/anolis.csv") # look for the file in the Data directory

This is an Anolis lizard sexual size dimorphism dataset. It has values of dimorphism by
species for different ecomorphs, or microhabitat specialists.

To save the data, give it a name and save it:

> anolis <- read.csv("Data/anolis.csv")

It is a good practice to always check that the data were read in properly. If it is a large
file, you’ll want to at least check the beginning and end were read in properly:

> head(anolis)

species logSSD ecomorph

1 oc -0.00512 twig

2 eq 0.08454 crown-giant

3 co 0.24703 trunk-crown

4 aln 0.24837 trunk-crown

5 ol 0.09844 grass-bush

6 in 0.06137 twig

> tail(anolis)

species logSSD ecomorph

18 cr 0.39796 trunk-ground

19 st 0.15737 trunk-crown

20 cy 0.26024 trunk-ground

21 alu 0.08216 grass-bush

22 lo 0.13108 trunk

23 an 0.13547 twig

Voila! Now you can plot, take the mean, etc. Which prints out the first six and last six
lines of the file.

R can read in many other formats as well, including database formats, excel native format
(although it is easier in practice to save as .csv), fixed width formats, and scanning lines.
For more information see the R manual ”R Data Import/Export” which you can get from
help.start() or at http://www.r-project.org.

8.2. SUMMARY STATISTICS ON YOUR DATA 55

8.2 Summary statistics on your data

Suppose you wanted to compute and save the means and standard deviations for the
sexual size dimorphism values. A very convenient function for computing any function
over groups in your dataframe (here, ecomorphs), is the function aggregate (look up
help via ?aggregate).

Calculate the mean by ecomorph group:

> aggregate(anolis$logSSD, by=list(anolis$ecomorph), mean)

Group.1 x

1 crown-giant 0.1391750

2 grass-bush 0.1437525

3 trunk 0.1467167

4 trunk-crown 0.2626575

5 trunk-ground 0.3339650

6 twig 0.0848450

Notice we had to type anolis$ in front of the variables we wanted. This is because these
vectors are within the dataframe anolis. To be able to access anolisś goodies, we need
to tell R where to look (more on this later).

Notice that the argument to by, which groups we want the mean over, has to be a list,
so we coerced the variable anolis$ecomorph into a list.

Calculate the mean and the sd by ecomorph group, and this time save them:

> anolis.mean <- aggregate(anolis$logSSD, by=list(anolis$ecomorph), mean)

> anolis.sd <- aggregate(anolis$logSSD, by=list(anolis$ecomorph), sd)

> anolis.sd

Group.1 x

1 crown-giant 0.09909567

2 grass-bush 0.06924584

3 trunk 0.02136480

4 trunk-crown 0.09968872

5 trunk-ground 0.06966130

6 twig 0.07107131

Give the results of aggregate meaningful column names:

> names(anolis.mean) # check that this is what we want to modify

56 CHAPTER 8. DATA INPUT AND OUTPUT

[1] "Group.1" "x"

> names(anolis.mean) <- c("ecomorph", "mean")

> names(anolis.sd) <- c("ecomorph", "sd")

While we’re at it, let’s get the sample size so that we can calculate the standard error,
which is the standard deviation divided by the square root of the sample size.

> anolis.N <- aggregate(anolis$logSSD, by=list(anolis$ecomorph), length)

> names(anolis.N) <- c("ecomorph", "N")

8.2.1 merge

It’s not convenient to have so many data objects, what we’d really like is to have all
summary statistics together in one data frame. So let’s use the merge function.

Merge works two objects at a time, and merges by default on the common column names
(here, ecomorph):

> merge(anolis.mean, anolis.sd)

ecomorph mean sd

1 crown-giant 0.1391750 0.09909567

2 grass-bush 0.1437525 0.06924584

3 trunk 0.1467167 0.02136480

4 trunk-crown 0.2626575 0.09968872

5 trunk-ground 0.3339650 0.06966130

6 twig 0.0848450 0.07107131

Otherwise, you must specify by=. Or to be safe, you can specify it, it’s good practice:

> out <- merge(anolis.mean, anolis.sd, by="ecomorph")

There is also options for by.x= and by.y= in case your columns have different names in
the two objects – you can tell R which two columns to match.

Do it again to add the third object, N:

> out <- merge(out, anolis.N, by="ecomorph")

> out

8.3. WRITE.CSV 57

ecomorph mean sd N

1 crown-giant 0.1391750 0.09909567 4

2 grass-bush 0.1437525 0.06924584 4

3 trunk 0.1467167 0.02136480 3

4 trunk-crown 0.2626575 0.09968872 4

5 trunk-ground 0.3339650 0.06966130 4

6 twig 0.0848450 0.07107131 4

Now, it’s easy to compute the standard error:

> out$se <- out$sd / sqrt(out$N)

> out

ecomorph mean sd N se

1 crown-giant 0.1391750 0.09909567 4 0.04954783

2 grass-bush 0.1437525 0.06924584 4 0.03462292

3 trunk 0.1467167 0.02136480 3 0.01233497

4 trunk-crown 0.2626575 0.09968872 4 0.04984436

5 trunk-ground 0.3339650 0.06966130 4 0.03483065

6 twig 0.0848450 0.07107131 4 0.03553565

8.3 write.csv

Writing out objects is even simpler. To write out a .csv file:

> write.csv(out, "anolis.summary.csv", row.names=FALSE)

The argument “row.names=” is optional, but I like to put it in or else you get row names
added to your spreadsheet as an extra column. Leave it as TRUE (the default) only if
the names are meaningful and useful.

8.4 save

You can also save the objects as R data files (.Rdat or .rda), which are R’s binary format.
The objects are saved directly, so you can just slurp up the .Rdata file and you will have
your objects back. This is handy if you want to continue your analysis with your objects
later.

> save(anolis, anolis.mean, anolis.sd, anolis.N, file="anolis.out.Rdata")

58 CHAPTER 8. DATA INPUT AND OUTPUT

The command to load these back in is:

> load("anolis.out.Rdata")

Which will restore your objects.

8.5 Saving plots

Let’s make some plots to visualize SSD by ecomorph type. Recall that we can get box
plots (median, quartiles, and range):

> barplot(out$mean, names.arg=out$ecomorph)

crown−giant trunk trunk−ground

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Let’s add some color and a label for the y variable. Rainbow is a function which will
generate a pallete of colors according to the number of colors you specify.

8.5. SAVING PLOTS 59

> barplot(out$mean, names.arg=out$ecomorph, col=rainbow(6), ylab="logSSD")

crown−giant trunk trunk−ground

lo
gS

S
D

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Alternatively, we may want to visually accentuate the ”high” versus ”low” dimorphism
groups (for a talk for instance):

> bb <- barplot(out$mean, names.arg=out$ecomorph, col=c("red", "red", "red", "blue",

+ "blue", "red"), ylab="logSSD", cex.lab=1.5, ylim=c(0, max(out$mean)+.1))

> bb

[,1]

[1,] 0.7

[2,] 1.9

[3,] 3.1

[4,] 4.3

[5,] 5.5

[6,] 6.7

> arrows(bb, out$mean, bb, out$mean+out$se, angle=90)

60 CHAPTER 8. DATA INPUT AND OUTPUT

crown−giant trunk trunk−ground

lo
gS

S
D

0.
0

0.
1

0.
2

0.
3

0.
4

We’ve also made the y-axis label bigger using cex.lab=1.5, and finally added error bars
by using the arrows() function. This function basically draws the error bars as line
segments specified by the first four arguments. The angle=90 tells the function to make
the arrow heads flat, as in error bars. Read ?arrows for more info. Finally, because
the graph was not big enough to plot the highest error bar, I had to increase the y-limit
using the ylim argument, which sizes the y-axis according to the lower and upper bounds
given.

8.5.1 pdf

Now, if we are quite happy with our plot, we can save it as a pdf file. First we have to
set the graphical devide to a pdf printer. Then plot the file, then turn the pdf device off
(or it will keep writing to the same file every time you plot).

> pdf(file="anolisMeanSSD.pdf") # turns on the pdf device for plotting

> barplot(out$mean, names.arg=out$ecomorph, col=c("red", "red", "red", "blue",

8.6. MESSIER INPUT FILES 61

+ "blue", "red"), ylab="logSSD", cex.lab=1.5)

> dev.off() # turns off pdf device for output

quartz

2

8.6 Messier input files

The first example of a csv file was very easy to bring in to R. If it was hand-entered, you
may have several issues including:

• extra delimiters in some rows (extra commas, etc.) so that some rows have extra
columns

• extra header lines

• lots of missing values

• mixed character and numeric input

Any of these issues will cause problems because what you are reading in is a data frame.
R expects columns to be of the same type, and the object is square, and etc.

Extra header lines are really easy to fix using the skip= option. However, the other
issues will have to be fixed by editing your .csv file, or by writing code that reads in the
lines one by one, makes the appropriate changes, and then writing out a “clean” .csv file.
Which way to go should be determined by how much work it will be to hand-edit vs.
program, which will depend a lot on how many problems the file contains, and whether
they are unique or not. (Probably 80% or more of your R programming efforts are aimed
at getting your input data into shape for analysis – which is why we cover these in the
next section).

8.6.1 Input files generated by data loggers

An easier case to handle: files that are generated by computer. Take, for example, the file
format generated from our hand-held Ocean Optics specroradiometer. It is very regular
in structure, and we have tons of data files, so it is well worth the programming effort to
code a script for automatic file input.

First, you can open the file below in a text editor. If you’d rather open it in R, you can
use:

62 CHAPTER 8. DATA INPUT AND OUTPUT

> readLines("Data/20070725_01forirr.txt")

Notice that there is a very large header, in fact the first 17 lines. Notice also that the
last line will cause a problem. Also, the delimiter in this file is tab (backslash t).

> temp <- readLines("Data/20070725_01forirr.txt")

> head(temp)

[1] "SpectraSuite Data File"

[2] "++++++++++++++++++++++++++++++++++++"

[3] "Date: Wed Jul 25 10:39:54 HST 2007"

[4] "User: guest"

[5] "Dark Spectrum Present: Yes"

[6] "Reference Spectrum Present: No"

> tail(temp)

[1] "888.38\t3.1306E-01"

[2] "888.54\t2.8153E-01"

[3] "888.71\t2.8245E-01"

[4] "888.87\t1.8988E-01"

[5] "889.04\t1.8988E-01"

[6] ">>>>>End Processed Spectral Data<<<<<"

We can solve these issues using the“skip”and the“comment.char”arguments of read.table
to ignore both types of lines, reading in only the ”good stuff”. Also, the default delimiter
in this function is the tab:

> dat <- read.table(file="Data/20070725_01forirr.txt", skip=17, comment.char=">")

> names(dat) <- c("lambda", "intensity")

> head(dat)

lambda intensity

1 177.33 0

2 177.55 0

3 177.77 0

4 177.99 0

5 178.21 0

6 178.43 0

> tail(dat)

8.6. MESSIER INPUT FILES 63

lambda intensity

3643 888.21 0.29491

3644 888.38 0.31306

3645 888.54 0.28153

3646 888.71 0.28245

3647 888.87 0.18988

3648 889.04 0.18988

The file produces (useless) rows of data outside of the range of accuracy of the spec-
traradiometer. We can get rid of these by subsetting the data, selecting only the range
300-750nm:

> dat <- dat[dat$lambda >= 300,] # cut off rows below 300nm

> dat <- dat[dat$lambda <= 750,] #cut off rows above 750nm

Or do both at once:

> dat <- dat[dat$lambda >= 300 & dat$lambda <= 750,]

If we are going to be doing this subsetting over and over, we might want to save this as
an index vector which tells us the position of the rows of data we want to keep in the
dataframe (don’t worry, we’ll cover this again in the workhorse functions chapter).

> oo <- dat$lambda >= 300 & dat$lambda <= 750

> dat <- dat[oo,] # same as longer version above

We can now save the cleaned up version of the irradiance data:

> write.csv(dat, "20070725_01forirr.csv")

64 CHAPTER 8. DATA INPUT AND OUTPUT

Chapter 9

The Workhorse Functions of Data
Manipulation

Chapter Topics/Skills:

Indexing/Subsetting accessing particular elements of your data object

String Matching using grep, sub

Sorting ordering data

Matching using logical comparisons to index

Merging matching two data frames or matrices by a common column and merging into
a new object

Reshaping R Objects changing the shape of matrices and dataframes, long-thin to
short-fat formats

Attributes, Classes the characteristics of data objects and how to manipulate them

As a biologist, these data manipulation topics may seem dry, but they are really pow-
erful and will allow you do to much more sophisticated analyses, and to do them with
confidence. So it is well worth taking some time to learn how to use them well.

9.1 Indexing and subsetting

In general, accessing elements of vectors, matrices, or dataframes is achieved through
indexing by:

inclusion a vector of positive integers indicating which elements of the vector to include

65

66 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

exclusion a vector of negative integers

logical values a vector of TRUE / FALSE values indicating which elements to include
/ exclude

by name a character vector of names of columns (only) or columns and rows

blank index take the entire column, row, or object

9.1.1 Vectors

The “index” of a vector is it’s number in the order. Each and every element in any data
object has at least one index (if vector, it’s position along the vector, if a matrix or data
frame, it’s row and column number, etc.)

Let’s create a vector:

> xx <- c(1, 5, 2, 3, 5)

> xx

[1] 1 5 2 3 5

Access specific values of xx by number:

> xx[1]

[1] 1

> xx[3]

[1] 2

You can use a function to generate an index. Get the last element (without knowing how
many there are) by:

> xx[length(xx)]

[1] 5

Retrieve multiple elements of xx by using a vector as an argument:

9.1. INDEXING AND SUBSETTING 67

> xx[c(1, 3, 4)]

[1] 1 2 3

> xx[1:3]

[1] 1 5 2

> xx[c(1, length(xx))] # first and last

[1] 1 5

Exclude elements by using a negative index:

> xx

[1] 1 5 2 3 5

> xx[-1] # exclude first

[1] 5 2 3 5

> xx[-2] # exclude second

[1] 1 2 3 5

> xx[-(1:3)] # exclude first through third

[1] 3 5

> xx[-c(2, 4)] # exclude second and fourth, etc.

[1] 1 2 5

Use a logical vector:

> xx[c(T, F, T, F, T)] # T is the same as TRUE

68 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

[1] 1 2 5

> xx > 2

[1] FALSE TRUE FALSE TRUE TRUE

> xx[xx > 2]

[1] 5 3 5

> xx > 2 & xx < 5

[1] FALSE FALSE FALSE TRUE FALSE

> xx[xx>2 & xx<5]

[1] 3

Subsetting (picking particular observations out of an R object) is something that you
will have to do all the time. It’s worth the time to understand it clearly.

9.1.2 Matrices and Dataframes

Matrices and dataframes are both rectangular having two dimensions, and handled very
similarly For indexing and subsetting. Let’s work with a dataframe that is provided
with the geiger package called geospiza. It is a list with a tree and a dataframe. The
dataframe contains five morphological measurements for 13 species. First, let’s clear the
workspace (or clear and start a new R session):

If you have the package geiger installed, get the built-in dataset this way:

> rm(list=ls())

> require(geiger)

> data(geospiza) # load the dataset into the workspace

> ls() # list the objects in the workspace

[1] "geospiza"

Let’s find out some basic information about this object:

9.1. INDEXING AND SUBSETTING 69

> class(geospiza)

[1] "list"

> attributes(geospiza)

$names

[1] "geospiza.tree" "geospiza.data"

It is a list with two elements. Here we want the data

> geo <- geospiza$geospiza.data

> dim(geo)

[1] 13 5

You can also read it in as a .csv input file in the Data directory and proceed.

> geo <- read.csv("Data/geospiza_raw.csv")

> dim(geo)

It is a dataframe with 13 rows and 5 columns. If we want to know all the attributes of
geo:

> attributes(geo)

$names

[1] "wingL" "tarsusL" "culmenL" "beakD" "gonysW"

$row.names

[1] "magnirostris" "conirostris" "difficilis" "scandens" "fortis"

[6] "fuliginosa" "pallida" "fusca" "parvulus" "pauper"

[11] "Pinaroloxias" "Platyspiza" "psittacula"

$class

[1] "data.frame"

We see that it has a ”names” attribute, which refers to column names in a dataframe.
Typically, the columns of a dataframe are the variables in the dataset. It also has
”rownames” which contains the species names (so it does not have a separate column for
species names).

Dataframes have two dimensions which we can use to index with: dataframe[row, col-
umn].

70 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

> geo # the entire object, same as geo[] or geo[,]

> geo[c(1, 3),] # select the first and third rows, all columns

> geo[, 3:5] # all rows, third through fifth columns

> geo[1, 5] # first row, fifth column (a single number)

> geo[1:2, c(3, 1)] # first and second row, third and first column (2x2 matrix)

> geo[-c(1:3, 10:13),] # everything but the first three and last three rows

> geo[1:3, 5:1] # first three species, but variables in reverse order

To prove to ourselves that we can access matrices in the same way, let’s coerce geo to be
a matrix:

> geom <- as.matrix(geo)

> class(geom)

[1] "matrix"

> class(geo)

[1] "data.frame"

> geo[1,5] # try a few more from the choices above to test

[1] 2.675983

Since geo and geom have row and column names, we can access by name (show that this
works for geom too):

> geo["pauper", "wingL"] # row pauper, column wingL

[1] 4.2325

> geo["pauper",] # row pauper, all columns

wingL tarsusL culmenL beakD gonysW

pauper 4.2325 3.0359 2.187 2.0734 1.9621

We can also use the names (or rownames) attribute if we are lazy. Suppose we wanted
all the species which began with ”pa”. we could find which position they hold in the
dataframe by looking at the rownames, saving them to a vector, and then indexing by
them:

9.1. INDEXING AND SUBSETTING 71

> sp <- rownames(geo)

> sp # a vector of the species names

[1] "magnirostris" "conirostris" "difficilis" "scandens" "fortis"

[6] "fuliginosa" "pallida" "fusca" "parvulus" "pauper"

[11] "Pinaroloxias" "Platyspiza" "psittacula"

> sp[c(7,8,10)] # the ones we want are #7,8, and 10

[1] "pallida" "fusca" "pauper"

> geo[sp[c(7,8,10)],] # rows 7,8 and 10, same as geo[c(7, 8, 10)]

wingL tarsusL culmenL beakD gonysW

pallida 4.265425 3.089450 2.430250 2.016350 1.949125

fusca 3.975393 2.936536 2.051843 1.191264 1.401186

pauper 4.232500 3.035900 2.187000 2.073400 1.962100

One difference between dataframes and matrices is that Indexing a data frame by a single
vector (meaning, no comma separating) selects an entire column. This can be done by
name or by number:

> geo[3] # third column

> geo["culmenL"] # same

> geo[c(3,5)] # third and fifth column

> geo[c("culmenL", "gonysW")] # same

Prove to yourself that selecting by a single index has a different behavior for matrices
(and sometimes produces an error. Why? Because internally, a dataframe is actually
a list of vectors. Thus a single name or number refers to the column, rather than a
coordinate in a cartesian-coordinate-liek system. However, a matrix is actually a vector
with breaks in it. So a single number refers to a position along the single vector. A
single name could work, but only if the individual elements of the matrix have names
(like naming the individual elements of a vector).

Another difference is that dataframes (and lists below) can be accessed by the $ operator.
It means indicates a column within a dataframe, so dataframe$column. This is another
way to select by column:

> geo$culmenL

[1] 2.724667 2.654400 2.277183 2.621789 2.407025 2.094971 2.430250 2.051843

[9] 1.974420 2.187000 2.311100 2.331471 2.259640

72 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

An equivalent way to index is by using the subset function. Some people prefer it
because you have explicit parameters for what to select and which variables to include.
See help page ?subset.

9.1.3 Lists

A list is like a vector, except that whereas a vector has the same type of data (numeric,
character, factor) in each slot, a list can have different types in different slots. They are
sort of like expandable containers, flexibly accommodating any group of objects that the
user wants to keep together.

They are accessed by numeric index or by name (if they are named), but they are accessed
by double square brackets. Also, you can’t access multiple elements of lists by using
vectors of indices:

> mylist <- list(vec = 2*1:10, mat = matrix(1:10, nrow=2), cvec = c("frogs", "birds"))

> mylist

$vec

[1] 2 4 6 8 10 12 14 16 18 20

$mat

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

$cvec

[1] "frogs" "birds"

> mylist[[2]]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> mylist[["vec"]]

[1] 2 4 6 8 10 12 14 16 18 20

> # mylist[[1:3]] # gives an error if you uncomment it

> mylist$cvec

[1] "frogs" "birds"

9.2. STRING MATCHING 73

9.2 String Matching

A more useful feature is string matching. R has grep facilities, which can do partial
matching of character strings. For example, we could directly search for species (the
object or ”x”) names which contain ”p” (the pattern):

> sp <- rownames(geo)

> grep(pattern = "p", x = sp) # returns indices

[1] 7 9 10 12 13

> grep("p", sp, value=T) # returns the species names which match

[1] "pallida" "parvulus" "pauper" "Platyspiza" "psittacula"

> grep("p", sp, ignore.case=T, value=T) # case-sensitive by default

[1] "pallida" "parvulus" "pauper" "Pinaroloxias" "Platyspiza"

[6] "psittacula"

> grep("^P", sp, value=T) # only those which start with (^) capital P

[1] "Pinaroloxias" "Platyspiza"

It is possible to use perl-type regular expressions, and the sub function is also available.
Sub is related to grep, but substitutes a replacement value to the matched pattern. Notice
that there are two species which have upper case letters. We can fix this with:

> sp <- rownames(geo)

> sub(pattern = "^P", replacement = "p", sp)

[1] "magnirostris" "conirostris" "difficilis" "scandens" "fortis"

[6] "fuliginosa" "pallida" "fusca" "parvulus" "pauper"

[11] "pinaroloxias" "platyspiza" "psittacula"

> rownames(geo) <- sub(pattern = "^P", replacement = "p", sp) # to save changes

74 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

9.3 Ordering Data

Suppose we now want geo in alphabetical order. We can use the sort function to sort
the rownames vector, then use it to index the dataframe:

> sort(rownames(geo))

> geo[sort(rownames(geo)),]

A better option for dataframes, though, is order:

> order(rownames(geo)) # the order that the species should take to be

[1] 2 3 5 6 8 1 7 9 10 11 12 13 4

> # sorted from a-z

> rbind(rownames(geo), order(rownames(geo))) # to illustrate

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] "magnirostris" "conirostris" "difficilis" "scandens" "fortis" "fuliginosa"

[2,] "2" "3" "5" "6" "8" "1"

[,7] [,8] [,9] [,10] [,11] [,12]

[1,] "pallida" "fusca" "parvulus" "pauper" "pinaroloxias" "platyspiza"

[2,] "7" "9" "10" "11" "12" "13"

[,13]

[1,] "psittacula"

[2,] "4"

> oo <- order(rownames(geo))

> geo[oo,] # sorted in alpha order

wingL tarsusL culmenL beakD gonysW

conirostris 4.349867 2.984200 2.654400 2.513800 2.360167

difficilis 4.224067 2.898917 2.277183 2.011100 1.929983

fortis 4.244008 2.894717 2.407025 2.362658 2.221867

fuliginosa 4.132957 2.806514 2.094971 1.941157 1.845379

fusca 3.975393 2.936536 2.051843 1.191264 1.401186

magnirostris 4.404200 3.038950 2.724667 2.823767 2.675983

pallida 4.265425 3.089450 2.430250 2.016350 1.949125

parvulus 4.131600 2.973060 1.974420 1.873540 1.813340

pauper 4.232500 3.035900 2.187000 2.073400 1.962100

pinaroloxias 4.188600 2.980200 2.311100 1.547500 1.630100

9.4. MATCHING 75

platyspiza 4.419686 3.270543 2.331471 2.347471 2.282443

psittacula 4.235020 3.049120 2.259640 2.230040 2.073940

scandens 4.261222 2.929033 2.621789 2.144700 2.036944

Order can sort on multiple arguments, which means that you can use other columns to
break ties. Let’s trim the species names to the first letter using the substring function,
then sort using the first letter of the species name and breaking ties by tarsusL:

> sp <- substring(rownames(geo), first=1, last=1)

> oo <- order(sp , geo$tarsusL) # order by first letter species, then tarsusL

> geot <- geo[oo,]["tarsusL"] # ordered geo dataframe, take only the wingL column

> geo <- geo[oo,]

Note: using geo["tarsusL"] as a second index for order doesn’t work, because it is a one
column dataframe, as opposed to geo$tarsus which is a vector. It must match sp, which
is a vector. Check the dim and length of each. vectors have length only, dataframes
have dimension 2.

9.4 Matching

Matching is very easy in R, and is often used to create a logical vector to subset objects.
Greater than and less than are as usual, but logical equal is ”==” to differentiate from
the assignment operator. Also >= and <=.

> geot > 3 # a logical index

tarsusL

conirostris FALSE

difficilis FALSE

fuliginosa FALSE

fortis FALSE

fusca FALSE

magnirostris TRUE

parvulus FALSE

pinaroloxias FALSE

pauper TRUE

psittacula TRUE

pallida TRUE

platyspiza TRUE

scandens FALSE

76 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

> geot == 3 # must match exactly 3, none do

tarsusL

conirostris FALSE

difficilis FALSE

fuliginosa FALSE

fortis FALSE

fusca FALSE

magnirostris FALSE

parvulus FALSE

pinaroloxias FALSE

pauper FALSE

psittacula FALSE

pallida FALSE

platyspiza FALSE

scandens FALSE

> geot[geot > 3] # use to get observations which have tarsus > 3

[1] 3.038950 3.035900 3.049120 3.089450 3.270543

> # ii <- geot > 3 # these two lines of code accomplish the same

> # geot[ii]

> cbind(geo["tarsusL"], geot > 3) # check

tarsusL tarsusL

conirostris 2.984200 FALSE

difficilis 2.898917 FALSE

fuliginosa 2.806514 FALSE

fortis 2.894717 FALSE

fusca 2.936536 FALSE

magnirostris 3.038950 TRUE

parvulus 2.973060 FALSE

pinaroloxias 2.980200 FALSE

pauper 3.035900 TRUE

psittacula 3.049120 TRUE

pallida 3.089450 TRUE

platyspiza 3.270543 TRUE

scandens 2.929033 FALSE

> geo[geot>3,]["tarsusL"] # what does this do?

9.4. MATCHING 77

tarsusL

magnirostris 3.038950

pauper 3.035900

psittacula 3.049120

pallida 3.089450

platyspiza 3.270543

Matching and subsetting works really well for replacing values. Suppose we thought that
every measurement that was less than 2.0 was actually a mistake. We can remove them
from the data:

> geo [geo<2] <- NA

Missing values compared to anything else will return a missing value (so NA == NA
returns NA, which is usually not what you want). You must test it with is.na function.
You can also test multiple conditions with and (&) and or (|)

> !is.na(geo$gonysW)

[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE

[13] TRUE

> geo[!is.na(geo$gonysW) & geo$wingL > 4,] # element by element "and"

wingL tarsusL culmenL beakD gonysW

conirostris 4.349867 2.984200 2.654400 2.513800 2.360167

fortis 4.244008 2.894717 2.407025 2.362658 2.221867

magnirostris 4.404200 3.038950 2.724667 2.823767 2.675983

psittacula 4.235020 3.049120 2.259640 2.230040 2.073940

platyspiza 4.419686 3.270543 2.331471 2.347471 2.282443

scandens 4.261222 2.929033 2.621789 2.144700 2.036944

> geo[!is.na(geo$gonysW) | geo$wingL > 4,] # element by element "or"

wingL tarsusL culmenL beakD gonysW

conirostris 4.349867 2.984200 2.654400 2.513800 2.360167

difficilis 4.224067 2.898917 2.277183 2.011100 NA

fuliginosa 4.132957 2.806514 2.094971 NA NA

fortis 4.244008 2.894717 2.407025 2.362658 2.221867

magnirostris 4.404200 3.038950 2.724667 2.823767 2.675983

parvulus 4.131600 2.973060 NA NA NA

78 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

pinaroloxias 4.188600 2.980200 2.311100 NA NA

pauper 4.232500 3.035900 2.187000 2.073400 NA

psittacula 4.235020 3.049120 2.259640 2.230040 2.073940

pallida 4.265425 3.089450 2.430250 2.016350 NA

platyspiza 4.419686 3.270543 2.331471 2.347471 2.282443

scandens 4.261222 2.929033 2.621789 2.144700 2.036944

> !is.na(geo$gonysW) && geo$wingL > 4 # vectorwise "and"

[1] TRUE

Matching works on strings also:

> geo[rownames(geo) == "pauper",] # same as geo["pauper",]

> geo[rownames(geo) < "pauper",]

There are even better functions for strings, though. In the expression A %in% B, the %in%
operator compares two vectors of strings, and tells us which elements of A are present in
B.

> newsp <- c("clarkii", "pauper", "garmani")

> newsp[newsp %in% rownames(geo)] # which new species are in geo?

We can define the ”without” operator:

> "%w/o%" <- function(x, y) x[!x %in% y]

> newsp %w/o% rownames(geo) # which new species are not in geo?

9.5 Merging

Merging is another powerful database function. The concept is simple. Given two objects
with a common matching key, can we merge them together into one object? Usually, the
matching key in comparative data is the species name.

A common task is to match a morphology dataset with an ecology dataset, or a tree file
with a data file. Continuing our example, let’s make an ecology field and add it to geot:

> geot$ecology <- LETTERS[1:nrow(geot)] # A:M

Now, let’s merge geo[”tarsusL”] with the first five rows of geot:

9.5. MERGING 79

> # only maches to both datasets are included

> merge(x=geo["tarsusL"], y=geot[1:5,], by= "row.names")

Row.names tarsusL.x tarsusL.y ecology

1 conirostris 2.984200 2.984200 A

2 difficilis 2.898917 2.898917 B

3 fortis 2.894717 2.894717 D

4 fuliginosa 2.806514 2.806514 C

5 fusca 2.936536 2.936536 E

> # all species in both datasets are included

> merge(x=geo["tarsusL"], y=geot[1:5,], by= "row.names", all=T)

Row.names tarsusL.x tarsusL.y ecology

1 conirostris 2.984200 2.984200 A

2 difficilis 2.898917 2.898917 B

3 fortis 2.894717 2.894717 D

4 fuliginosa 2.806514 2.806514 C

5 fusca 2.936536 2.936536 E

6 magnirostris 3.038950 NA <NA>

7 pallida 3.089450 NA <NA>

8 parvulus 2.973060 NA <NA>

9 pauper 3.035900 NA <NA>

10 pinaroloxias 2.980200 NA <NA>

11 platyspiza 3.270543 NA <NA>

12 psittacula 3.049120 NA <NA>

13 scandens 2.929033 NA <NA>

The results of merge are sorted by default on the sort key. To turn it off:

> geo <- geo[rev(rownames(geo)),] # reverse the species order of geo

> # merge on geo first, then geot

> merge(x=geo["tarsusL"], y=geot[1:5,], by= "row.names", sort=F)

Row.names tarsusL.x tarsusL.y ecology

1 fusca 2.936536 2.936536 E

2 fortis 2.894717 2.894717 D

3 fuliginosa 2.806514 2.806514 C

4 difficilis 2.898917 2.898917 B

5 conirostris 2.984200 2.984200 A

> # geot first, then geo

> merge(x=geot[1:5,], y=geo["tarsusL"], by= "row.names", sort=F)

80 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

Row.names tarsusL.x ecology tarsusL.y

1 conirostris 2.984200 A 2.984200

2 difficilis 2.898917 B 2.898917

3 fuliginosa 2.806514 C 2.806514

4 fortis 2.894717 D 2.894717

5 fusca 2.936536 E 2.936536

9.6 Reshaping R Objects

Internally, R objects are stored as one huge vector. The various shapes of objects are
simply created by R knowing where to break the vector into rows and columns. So it is
very easy to reshape matrices:

> vv <- 1:10 # a vector

> mm <- matrix(vv, nrow=2) # a matrix

> mm

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> dim(mm) <- NULL

> mm <- matrix(vv, nrow=2, byrow=T) # a matrix, but cells are now filled by row

> mm

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

> dim(mm) <- NULL

> mm # vector is now n a different order because the collapse occurred by column

[1] 1 6 2 7 3 8 4 9 5 10

Other means of ”collapsing” dataframes are:

> unlist(geo) # produces a vector from the dataframe

> # the atomic type of a dataframe is a list

> unclass(geo) # removes the class attribute, turning the dataframe into a

> # series of vectors plus any names attributes, same as setting

> # class(geo) <- NULL

> c(geo) # similar to unclass but without the attributes

9.6. RESHAPING R OBJECTS 81

Practice

1. Recall from the chapter on Data Objects that we were simulating data in different
treatment groups, and wanting to visualize the groups. Now that we know how to
index and subset, we can use the points function to add different colored points
to the plot for different groups.

(a) Now let’s make some data which should differ. For the ”low” treatment, sim-
ulate y and y1 as normally distributed data with mean = -2 and sd=.5, and
”high” as mean=5, and sd=3. Remake the dataframe.

> species <- LETTERS[1:7]

> x <- c(2, 4, 8)

> y <- c(rnorm(7, mean=-2, sd=0.5), rnorm(7), rnorm(7, mean=5, sd=3))

> y1 <- c(rnorm(7, mean=-2, sd=0.5), rnorm(7), rnorm(7, mean=5, sd=3))

> y

[1] -1.7324331 -1.6198601 -1.6943661 -1.5550680 -1.5659884 -2.6173233

[7] -2.8677405 0.7436305 0.1378092 -0.5159335 -1.5854286 -0.1596901

[13] 1.6204093 1.8036682 5.4798608 2.8345419 5.9276164 4.8582151

[19] 3.1012095 8.3641030 0.1240776

> y1

[1] -2.7783919 -2.0899730 -2.1505971 -2.0055296 -1.5302355 -2.0239404

[7] -1.8948294 0.4669686 -0.3045481 0.0534605 -1.6229322 -1.6686932

[13] 0.2173391 0.4160709 3.1820160 6.2624768 5.0295437 5.3543262

[19] 1.9442462 11.2799850 -1.9427580

> dat <- data.frame(species, x, treatment=factor(rep(c("low", "med",

+ "high"), each=7), levels=c("low", "med", "high")), y, y1)

> dat

species x treatment y y1

1 A 2 low -1.7324331 -2.7783919

2 B 4 low -1.6198601 -2.0899730

3 C 8 low -1.6943661 -2.1505971

4 D 2 low -1.5550680 -2.0055296

5 E 4 low -1.5659884 -1.5302355

6 F 8 low -2.6173233 -2.0239404

7 G 2 low -2.8677405 -1.8948294

8 A 4 med 0.7436305 0.4669686

9 B 8 med 0.1378092 -0.3045481

10 C 2 med -0.5159335 0.0534605

11 D 4 med -1.5854286 -1.6229322

12 E 8 med -0.1596901 -1.6686932

13 F 2 med 1.6204093 0.2173391

82 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

14 G 4 med 1.8036682 0.4160709

15 A 8 high 5.4798608 3.1820160

16 B 2 high 2.8345419 6.2624768

17 C 4 high 5.9276164 5.0295437

18 D 8 high 4.8582151 5.3543262

19 E 2 high 3.1012095 1.9442462

20 F 4 high 8.3641030 11.2799850

21 G 8 high 0.1240776 -1.9427580

(b) Let’s differentially color the “high”, “medium”, and “low” points. First set up
the plot window without any points by plotting y, y1 with the plot parameter
type="n". Then select only the ”high” points by subsetting. You’ll want
to make an index vector to choose only the points you want. Then use the
points() function (which has the same form as the plot() function, but
only adds points to an existing plot. Choose three different colors for each
treatment level and plot all the data. Is there any patterning in y, y1?

(c) Ooops! The data are actually supposed to be blocked by treatment (the first
seven rows correspond to low, the second 7 correspond to med, etc.) Can you
remake the dataframe keeping the y and y1 in the same position, but fixing
the treatment?

(d) Make three plots: boxplot of treatment vs. y, treatment vs. y1, and three color
scatterplot of y vs. y1 (treatments should be indicated by different colors).

2. Matrix reshaping and indexing

(a) Create a matrix with the values 1 through 20, filling four rows. Save it as “x”.
item What are the attributes of x?

(b) Change it to a matrix with 2 rows and 10 columns by changing its attribute.
item Change x to a vector.

(c) Change x to a matrix with four rows, this time filling it by rows rather than
by columns (you may want to check the help page).

(d) Coerce x to a vector again. Is it in the same order as the previous vector?
What does this tell you about R’s default behavior when flattening matrices
to vector?

(e) Create the original x matrix again. Select only the 3rd row, 4th column. What
is it?

(f) Select rows 3 and 4, columns 4 and 5. Print it to the console by using the
print(x) function.

(g) Select the first and last rows, first and last columns. Print it.

3. Reading in Data and adding on

9.6. RESHAPING R OBJECTS 83

(a) Read in the external file bimac.csv in comma separated format. Save it as
“bimac”.

(b) This is a phylogenetic tree and data for the OUCH package. Without going
into details for now, this method allows biologists to specify selective regimes
on branches of the phylogeny, by specifying categories which correspond to
alternative “niches”. This is a body size evolution dataset, and “OU.LP” is a
hypothesis with three size categories. We would like to make three additional
hypotheses. Add additional columns to this dataframe: OU.1 which has values
of “global” for all rows, OU.3 which is the same as OU.LP, except those rows
with “NA” in the species names should get a value of “medium”, and OU.4
which is again similar to OU.LP, except that those rows with “NA” in the
species names get a value of “anc”.

84 CHAPTER 9. THE WORKHORSE FUNCTIONS OF DATA MANIPULATION

Chapter 10

Writing your own functions

We’ve learned how to write good scripts and debug at the console. You may have noticed
that you sometimes have to do the same things over and over again. And you find yourself
cutting and pasting bits of code and making minor changes to it. This is a situation where
writing your own function is a big help.

Functions help in several ways. Once you perfect a bit of code, they help achieve these
goals of good programming by writing code that is:

• Reusable and Generic

• Modular

• Easy to Maintain

10.1 Functions are wrappers for code that you want

to reuse

Functions are just bits of code that you want to reuse. You can even build up your
own function library in a script like myfunctions.R which you can source with every
script you write. So in this way, you can save yourself a lot of trouble by designing and
maintaining a “tight” function library.

A function is very easy to define. You need a name for your function, some arguments
(the input), a valid R statement (i.e., some code to run), and output to return. You then
put it together in this following format:

> my_function_name <- function(argument) statement

85

86 CHAPTER 10. WRITING YOUR OWN FUNCTIONS

The only things that are actually required are the name of your function, and the word
function followed by parentheses. Arguments are optional (well so are the statements,
but what would be the point of that?).

Here is a very simple function to calculate the square of a value:

> mysq <- function(x) { # function name is mysq

+ x*x # the function will return the square of x

+ }

Once you run the function definition through the console, your function will be stored in
RAM. Then you can then use your function in the normal way that you use functions:

> mysq(2)

[1] 4

You can have multiple lines of R code to run, and you can even have functions within
functions.The output from the function (the return value) is the last value computed. It
is often best practice to explicitly use the return function as in the code below.

> mysq <- function(x) {

+ plot(x, x*x, ylab="Square of x") # plot x and x*x on the y axis

+ return (x*x) # return the square of x

+ }

> mysq(1:10)

[1] 1 4 9 16 25 36 49 64 81 100

10.2 Arguments

Generally speaking, arguments are included in functions because you might want to
change them. Things that stay the same are usually hard-coded into the function. But
what if you want to change it sometimes but not others?In our little example, what if
you wanted to be able to change the label on the y-axis sometimes, but most of the time
you wanted it to just say ”Square of x”?

> mysq <- function(x, yylab="Square of x") { # default argument for the y-label

+

+ plot(x, x*x, ylab=yylab)

10.3. ORDER OF ARGUMENTS 87

+ return (x*x)

+

+ }

> mysq(1:10, yylab="X times X")

[1] 1 4 9 16 25 36 49 64 81 100

What happens if you just run the following:

> mysq(1:10)

[1] 1 4 9 16 25 36 49 64 81 100

These arguments with default values are therefore optional. Because they will run just
fine even if you don’t put anything for them. Whenever I write functions, I try to make
as many default arguments as I can so that I can run them with minimal brain power.
When you look at it 6 months later, you don’t want to have to reconstruct why you wrote
it in the first place just to make it go.

Another cute trick is that if you don’t want to have anything as your default value, but
you still want to have the option to change it, set the default to NULL.

> mysq <- function(x, yylab=NULL) { # default arg is no value for the y-label,

+

+ plot(x, x*x, ylab=yylab) # but you can specify it if you want to.

+ return (x*x)

+

+ }

> mysq(1:10, yylab="X times X")

[1] 1 4 9 16 25 36 49 64 81 100

10.3 Order of arguments

You may have noticed that you can run a function with or without naming the arguments.
For example:

> mysq(2)

[1] 4

88 CHAPTER 10. WRITING YOUR OWN FUNCTIONS

> mysq(x=2)

[1] 4

work just the same.

The reason is that R will assume that if you don’t name the arguments, they are in the
same order as in the function definition. Therefore,

> mysq(c(1, 3, 5, 7), "Squares of prime numbers")

[1] 1 9 25 49

> mysq(yylab = "Squares of prime numbers", x=c(1, 3, 5, 7))

[1] 1 9 25 49

Are the same. Another way to put this, if you don’t want to worry about the order that
the arguments are defined in, always use the names=.

10.4 Arbitrary numbers of arguments

R is very flexible with its arguments. You can also have an arbitrary number of arguments
by adding ... This is often used to pass additional arguments to plot(), which has many
optional arguments, but it can be used for anything.

> myfun <- function(x, y, ...) {

+ plot(x, y, ...)

+ }

> myfun(1:10, sqrt(1:10), col="red", type="l") # optional args color and line plot are passed to plot()

10.4. ARBITRARY NUMBERS OF ARGUMENTS 89

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

> myfun(1:10, sqrt(1:10), cex=3) # optional arg for point size passed to plot()

90 CHAPTER 10. WRITING YOUR OWN FUNCTIONS

●

●

●

●

●

●
●

●
●

●

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

Another common place where variable numbers of arguments comes up is in database
queries, where you may want to run a search on a number of terms.

> query <- function(...) {

+ paste(...)

+ }

> query("cat", "dog", "rabbit")

[1] "cat dog rabbit"

Or any situation where you are just not sure how many inputs you will have. For example,
you could have a list builder:

> addlist <- function(...) {

+ list(...)

+ }

> metadat <- addlist (dataset = "myeco", date="Jan 20, 2014")

> metadat

10.5. RETURN VALUE 91

$dataset

[1] "myeco"

$date

[1] "Jan 20, 2014"

> dat <- addlist (ind=1:10, names=letters[1:10], eco=rnorm(10))

> dat

$ind

[1] 1 2 3 4 5 6 7 8 9 10

$names

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

$eco

[1] 0.4781420 -0.6570550 2.0972989 -0.1178245 -0.8242408 1.8044553

[7] 0.6412108 -1.4537969 -0.6516616 -2.0685793

These may seem like a silly example (and it is), but it is kept simple so you can see what’s
going on. These default arguments are very useful for making your functions flexible so
that they can be more generic and reusable for many purposes.

10.5 Return value

As you have seen in the examples, R will return the last value computed (by default) or
whatever you specify in the return() function. One thing that is a little peculiar to R
is that you can only return one and only one object. So what do you do if you have
several pieces of information you want returned? Use a list:

> mysq <- function(x, yylab="Square of x") { # default argument for the y-label

+

+ plot(x, x*x, ylab=yylab)

+ output <- list(input=x, output=x*x)

+ return (output)

+

+ }

This is in fact what many model-fitting packages do. They return a list with the inputs,
any fitted parameters, and model fit statistics, as well as characteristics of the objects
such as names and factor levels, etc.

92 CHAPTER 10. WRITING YOUR OWN FUNCTIONS

10.6 Looking inside R: functions that are inside pack-

ages

If you want to look at how any particular function in R is written – you can! R is
open-source. You just type the name of the function with no parentheses:

> summary

function (object, ...)

UseMethod("summary")

<bytecode: 0x101fc6f08>

<environment: namespace:base>

You can see that it is a generic function, and that it uses different methods depending
on the class of the object.

Here are all the methods that are defined for summary:

> methods('summary')

[1] summary.aov summary.aovlist summary.aspell*

[4] summary.connection summary.data.frame summary.Date

[7] summary.default summary.ecdf* summary.factor

[10] summary.glm summary.infl summary.lm

[13] summary.loess* summary.manova summary.matrix

[16] summary.mlm summary.nls* summary.packageStatus*

[19] summary.PDF_Dictionary* summary.PDF_Stream* summary.POSIXct

[22] summary.POSIXlt summary.ppr* summary.prcomp*

[25] summary.princomp* summary.proc_time summary.srcfile

[28] summary.srcref summary.stepfun summary.stl*

[31] summary.table summary.tukeysmooth*

Non-visible functions are asterisked

Here’s how we find out what’s inside summary.factor for example:

> summary.factor

function (object, maxsum = 100, ...)

{

nas <- is.na(object)

10.7. SCOPE 93

ll <- levels(object)

if (any(nas))

maxsum <- maxsum - 1

tbl <- table(object)

tt <- c(tbl)

names(tt) <- dimnames(tbl)[[1L]]

if (length(ll) > maxsum) {

drop <- maxsum:length(ll)

o <- sort.list(tt, decreasing = TRUE)

tt <- c(tt[o[-drop]], `(Other)` = sum(tt[o[drop]]))

}

if (any(nas))

c(tt, `NA's` = sum(nas))

else tt

}

<bytecode: 0x10e80c238>

<environment: namespace:base>

Note: Internal functions are “hidden” inside the namespace of a package – the program-
mer has chosen to not make it available to the global environment. To find these, use
getAnywhere(’functionname’) ha!

10.7 Scope

It is important to know that when you write a function, everything that happens inside
the function is local in scope. It’s like a big family secret – everything that is said in the
family stays in the family. If you try to go talking about it to the outside world, no one
will know what you are talking about. For example, suppose you wrote a function with
some internal variables like this:

> myfunc <- function(fattony, littlejimmy) {

+

+ cannolis <- fattony*2 + littlejimmy

+ return(cannolis)

+ }

> myfunc(5, 4)

[1] 14

If we try type the following on the command line, we will get an error ‘... object

’cannolis’ not found’.

94 CHAPTER 10. WRITING YOUR OWN FUNCTIONS

> cannolis

Even though you ran the function, you can’t ask R how many cannolis you need because
what’s created in the function stays in the function. When the function is over, poof!
It’s gone. That’s because the objects used within the function are local in scope and not
available to the global environment.

Of course, global variables are available to use inside of functions, just as family members
are aware of what’s going on in the outside world. So for example, it is perfectly valid to
use pi or anything you’ve defined previously in the global environment inside a function:

> myfunc <- function(fattony, littlejimmy) {

+

+ cannolis <- fattony*pi + littlejimmy+littlebit

+ return(round(cannolis))

+ }

> littlebit <- 1

> myfunc(5, 4)

[1] 21

The code above worked because littlebit was defined prior to running our function.
But you can see that it’s often a good idea to actually pass into a function anything that
is needed to make it go.

So you may be wondering why it works this way? Well in general, in most advanced
programming languages, the objects within functions are local in scope. This is to make
it easier to program. If there is a clean separation between what goes on inside a function
and what is outside of it, then you can write functions without worrying about every
possibility regarding what could happen. You only have to worry about what is happening
inside your little function. That’s what helps to make it modular and extensible – so
your functions can play nice with other codes.

10.8 Search Paths and Environment

Remember what we were saying about functions in R are objects? So if we look at our
workspace, our functions should be there:

> ls()

[1] "aa" "addcols" "addlist" "dat"

[5] "littlebit" "ll" "metadat" "my_function_name"

10.8. SEARCH PATHS AND ENVIRONMENT 95

[9] "myfun" "myfunc" "mymean" "myse"

[13] "mysq" "ncentral" "neast" "oo"

[17] "query" "readiir" "readirr" "regions"

[21] "regs" "south" "states" "west"

And sure enough they are! As well as all of our data frames, lists, and other objects that
we created. Now I should note that it is possible to write a function in R with the same
name as a built-in function in R. For example, if for some crazy reason, we wanted to
redefine the mean function, we can!

> mean <- function(...) {

+ return ("dirty harry")

+ }

> mean(1:10)

[1] "dirty harry"

What happened? Well we wrote our own function for mean. Why is R only returning
our new function, an not the built-in one? Well, any object that we create (including our
own functions) are in the Global Environment. Whereas functions in packages are in
their further down the search path. R knows where things are by the order that they are
attached. The global environment is first (containing any user-created objects), followed
by attached packages:

> search()

[1] ".GlobalEnv" "tools:RGUI" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

The function mean() is in the base package, which is all the way at the end. So when we
type mean() R will first look to see if there is any function by that name in our global
environment, then in any of the other attached packages before finally finding it in base.
Needless to say, it’s very confusing (and potentially dangerous!) to name objects by the
same name as R key words or built-in functions. Don’t do it!

If you need to get rid of the custom build mean function, just type rm(mean) at the
console.

> rm(mean)

> mean(1:10)

96 CHAPTER 10. WRITING YOUR OWN FUNCTIONS

[1] 5.5

Whew! Or just shut down and restart R. It’s a clean slate after that! (Don’t worry, you
can’t break R ;).

10.9 Exercises

1. Write your own function for calculating a mean of a vector, using only the sum()

and the length() functions. The input should be a vector, and the output is the
mean.

2. Write your own function for calculating the standard error. You can use the sd(),
sqrt(), and the length() functions. The input should be a vector of values.

3. Go back to Chapter 7 section 7.6.1. Write a function that will read in the ir-
radiance data, trim it to wavelengths between 300 and 750 nm, and plot the
data. Then use that function to read in files for the different directions: up, for
(forward), left, and right: 20070725_01upirr.txt, 20070725_01forirr.txt,

20070725_01leftirr.txt, 20070725_01rightirr.txt. Your function should take
as input just the file name. Write a script that defines the function and then calls
the function four times, once for each file.

4. Now take the function you just made, and add optional arguments for the cut
off values 300 and 750. You may want to trim the data to different values. Try
trimming it to different values and see what happens using your new function.

Chapter 11

All About Data

Goals:

• Handling raw data and preprocessing to R data files.

• Programming:

Identify what do you want to do? (you can’t do it if you can’t articulate it
exactly)

Am I sure the raw data is free of error? (check data entry)

Do I need to reshape my data? (check data processing)

Am I sure that all of the programming steps are doing what I want them to do
and free of error?

Do the results make sense? Do I trust it?

Concepts:

• Reading in external files

• Saving r data files

• Flowcharting

11.1 Raw data to ”curated” data

An important part of data analysis is checking for accuracy in your data transfer from
your field notebook to the raw data files, to your processed data files. Here are some best
practices:

97

98 CHAPTER 11. ALL ABOUT DATA

• Set up a ”data” and an ”Rdata” directory for your raw data files and processed data
files, respectively.

• Raw data is data that is the most original source that is on the computer. Whether
it is manually entered it, or obtained from the literature. It is usually a text file
or a spreadsheet. The most convenient format for R is ”.csv” or comma separated
format, but R can handle any delimiter or fixed-width file. Excel files should be
saved as .csv if at all possible (it is possible to read in Excel, but it is a pain).

• Data entry is inherently error-prone. Keeping this in mind, take some steps to
make it as easy as possible to enter accurately. Organize your field notebook in
rows and columns, then type the data into your file exactly in the same order as in
your notebook.

• It is important to check raw data for accurate data entry. Print out your text file,
and check against your notebook line by line and number by number.

• Raw data should ONLY be corrected for typos on data entry. Numbers should not
be altered because they are ”outliers”. Filling in missing data is not recommended.

• Protect the sanctity of your raw data. Keep your raw data files pristine and unal-
tered. Any changes, fixes, or cleaning up that you should be done in the analysis
(i.e., via your R script), and not to your raw data file itself. If you permanently
change your raw data file, and later have questions, you will never be able to re-
construct what you did. If it is just too difficult to fix the data with code, at least
keep a copy of your original data file, and save a version as ”edited” and keep notes
on what was modified.

• Save your cleaned up, reogranized data as an R data file (.rda or .Rdata) in your
Rdata folder.

• Save a script of all your data processing and analysis. If you send someone this
script and the raw data file, they should be able to run your code.

• As with all programming projects, plan your steps from input (raw data and what
shape is it in) to output (”curated data” and what shape do you want for our
analyses).

R has great database (merging and matching), string manipulation, sorting, and data
reshaping facilities. We’ll illustrate some of these in a typical data ”curation” step using
a morphological dataset of Anolis lizards. We will start with the raw data, entered into
the computer from a field notebook and save the ”curated” product as an R data file.

11.1. RAW DATA TO ”CURATED”DATA 99

11.1.1 Reading in fixed width format

Although read.csv is much easier, the data was intended for use with SAS and saved
as a fixed-width format. R has a fixed-width reading function called read.fwf which
requires as arguments the filename and a vector of widths. Note that if you have blank
columns that you don’t want read in, indicate the width of these with negative integers.
For example, we are reading in the first 13 characters as the first variable, character 14
as the second variable, skipping character 15, etc.. So let’s read in the files, assign names
to the columns, and then check that the complete file was read in using the head() and
tail() functions (which are especially useful for large datasets):

> read.fwf('data/94morphja.dat', widths=c(13, 1, -1, 5, 5, 5, -1, 1, 5, 5, 5,

+ 3, -5, -5, -1, 1), as.is=T, strip.white=T) ->datja

> read.fwf('data/94morphpr.dat', widths=c(13, 1, -1, 5, 5, 5, -1, 1, 5, 5, 5,

+ 3, -5, -5, -1, 1), as.is=T, strip.white=T) ->datpr

> names(datpr) <- names(datja) <- c('species', 'sex', 'svl', 'mass', 'tail', 'regen',
+ 'forel', 'hindl', 'headl', 'lamn', 'food')
> head(datja)

species sex svl mass tail regen forel hindl headl lamn food

1 garmani m 103.0 23.5 151.0 r 41.0 71.0 . 33 n

2 sagrei m 54.0 3.8 93.5 r 23.0 39.0 13.5 18 n

3 lineatopus m 62.5 . 82.0 r 28.0 47.0 19.0 20 y

4 sagrei m 51.0 3.9 104.0 . 22.0 36.0 14.0 17 y

5 sagrei m 50.0 3.2 65.0 r 21.5 37.0 13.5 18 n

6 sagrei m 45.5 3.1

> tail(datja)

species sex svl mass tail regen forel hindl headl lamn food

52 garmani f 75 10.5 156.0 . 30.0 53.0 19.5 28 y

53 valencienni m 61 3.6 77.0 . 21.0 30.5 16.5 24 .

54 grahami f 46 y

55 grahami m 69 y

56 sagrei m 51 y

57 sagrei m 48 n

> head(datpr)

species sex svl mass tail regen forel hindl headl lamn food

1 stratulus m 43.5 1.9 44.0 r 21.0 32.0 11.5 19 y

100 CHAPTER 11. ALL ABOUT DATA

2 evermanni m 65.5 5.7 81.0 r 31.0 49.0 18.0 28 n

3 krugi j 49.0 1.2 105.0 . 16.0 32.0 10.5 18 .

4 krugi m 48.0 2.6 126.0 . 21.0 39.0 14.0 17 .

5 pulchellus m 42.0 1.6 110.0 . 17.5 31.5 12.3 18 .

6 stratulus j 32.0 1.3 58.5 r 18.0 28.5 10.5 21 .

> tail(datja)

species sex svl mass tail regen forel hindl headl lamn food

52 garmani f 75 10.5 156.0 . 30.0 53.0 19.5 28 y

53 valencienni m 61 3.6 77.0 . 21.0 30.5 16.5 24 .

54 grahami f 46 y

55 grahami m 69 y

56 sagrei m 51 y

57 sagrei m 48 n

These files are not too big, so display the datasets and take a look to make sure that all
the data are in the proper columns of the dataframe. The data were saved as separate
files for each island, so we want to add in island to each dataset. If we like, we can add
year, etc.

> datpr$island <- "Puerto Rico"

> datja$island <- "Jamaica"

11.1.2 Combining the data into one file

We want to have one merged file to work with. A very simple thing to do would be
to simply ”row-bind” the data frames using rbind(). However, a danger here is that if
the columns of one file is not in the same order as the columns of another file, we will
have the wrong columns stacked on top of one another. However, we can check that the
columns are identical before doing a row bind operation.

> names(datja)

[1] "species" "sex" "svl" "mass" "tail" "regen"

[7] "forel" "hindl" "headl" "lamn" "food" "island"

> names(datpr)

[1] "species" "sex" "svl" "mass" "tail" "regen"

[7] "forel" "hindl" "headl" "lamn" "food" "island"

11.1. RAW DATA TO ”CURATED”DATA 101

We can see that they look good. If we had a huge number of columns, though, trusting
your eye is sometimes risky. You can check that the names vectors match element-by-
element by doing this:

> names(datja) == names(datpr)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Or even adding up all the cases where the elements DO NOT match. Logical values in
arithmetic operations have value TRUE=1, FALSE=0.

> sum(names(datja) != names(datpr))

[1] 0

OK, now we’re sure, so let’s combine the datasets:

> rbind(datja, datpr) -> dat

11.1.3 Adding variables to the data

Caribbean Anolis lizards have evolved convergently into distinct microhabitat specialists
termed ”ecomorphs”. So we would like to add in the ecomorph designation, which is
missing from the data files. To do that, we can make use of some very nice subsetting
and string matching functions.

The %in% operator is a matching function for vectors of character strings. It returns
which of those character strings to the left match the list of character strings on the
right.

First we need to create vectors for each of the ecomorphs, containing the species names
which belong to the ecomorph:

> spp <- unique(dat$species)

> spp # list of species in our sample

[1] "garmani" "sagrei" "lineatopus" "grahami"

[5] "valencienni" "stratulus" "evermanni" "krugi"

[9] "pulchellus" "cristatellus" "gundlachi" "occultus"

[13] "cuvieri"

102 CHAPTER 11. ALL ABOUT DATA

> tgspp <- c("cristatellus", "gundlachi", "sagrei", "lineatopus")

> tcspp <- c("stratulus", "evermanni", "grahami")

> cgspp <- c("cuvieri", "garmani")

> gbspp <- c("krugi", "pulchellus")

> twspp <- c("occultus", "valencienni")

Make sure that all of the species have been assigned to one and only one of the eco-
morph groups. First combine all of the ecomorph species groups, into a vector. Test for
duplicates:

> ecospp <- c(tgspp, tcspp, cgspp, gbspp, twspp)

> length(ecospp)

[1] 13

> length(spp)

[1] 13

> ecospp == unique(ecospp) # if any are duplicated or missing, will get some FALSE

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Make a new function called ”%w/o%” which tells us what is in string A that is NOT in
string B (A without B). There should be no spp which are not in ecospp and vice versa.

> "%w/o%" <- function(x, y) x[!x %in% y]

> ecospp %w/o% spp

character(0)

> spp %w/o% ecospp

character(0)

Now we are sure that we assigned everything to one and only one group.

(If you want to see what happens when we make a mistake go back and change the ”4”
in the list for ”tcspp” to a ”3” and see what happens – don’t forget to reverse it and
rerun the code correctly though). Now we can create an index vector for where to fill the
(newly created) ”ecomorph” variable with the correct ecomorph by searching for those
rows which belong to the correct species.

11.1. RAW DATA TO ”CURATED”DATA 103

> tgi <- dat$species %in% tgspp

> tci <- dat$species %in% tcspp

> cgi <- dat$species %in% cgspp

> gbi <- dat$species %in% gbspp

> twi <- dat$species %in% twspp

Now use these ecomorph indicies to add a variable called ”ecomorph” to the dataset.

> dat$ecomorph[twi] <- "twig"

The above code fills the variable ”ecomorph” with ”twig” if the species name is one of
”valencienni” or ”occultus”. You can check by looking at the following (I’ve only printed
the first 10 lines here to save paper). You should have a ”TRUE” everywhere that the
species is ”valencienni” or ”occultus”, and FALSE for all others. And for each of these
the ecomorph should be ”twig”.:

> cbind(twi, dat[, c('species', 'ecomorph')])

twi species ecomorph

151 FALSE cristatellus <NA>

152 FALSE krugi <NA>

153 FALSE krugi <NA>

154 FALSE stratulus <NA>

155 FALSE krugi <NA>

156 FALSE cristatellus <NA>

157 FALSE stratulus <NA>

Let’s do the rest:

> dat$ecomorph[tgi] <- "trunk-ground"

> dat$ecomorph[tci] <- "trunk-crown"

> dat$ecomorph[cgi] <- "crown-giant"

> dat$ecomorph[gbi] <- "grass-bush"

Check that everything looks OK (make sure that there are no ”NA”s in the ecomorph
field, etc.

> head(dat)

104 CHAPTER 11. ALL ABOUT DATA

species sex svl mass tail regen forel hindl headl lamn food

1 garmani m 103 23.5 151.0 r 41.0 71.0 . 33 n

2 sagrei m 54 3.8 93.5 r 23.0 39.0 13.5 18 n

3 lineatopus m 62.5 . 82.0 r 28.0 47.0 19.0 20 y

4 sagrei m 51 3.9 104.0 . 22.0 36.0 14.0 17 y

5 sagrei m 50 3.2 65.0 r 21.5 37.0 13.5 18 n

6 sagrei m 45.5 3.1

island ecomorph

1 Jamaica crown-giant

2 Jamaica trunk-ground

3 Jamaica trunk-ground

4 Jamaica trunk-ground

5 Jamaica trunk-ground

6 Jamaica trunk-ground

> head(dat$ecomorph)

[1] "crown-giant" "trunk-ground" "trunk-ground" "trunk-ground"

[5] "trunk-ground" "trunk-ground"

11.1.4 Sort by species and sex

First we create and order index ”o” using the function order. Then we reorder the data
frame rows by ”o” and resave:

> o <- order(dat$species, dat$sex)

> dat <- dat[o,]

11.1.5 Editing data into R format

Notice that missing values in this dataset were encoded with a ”.”. This is not recognized
by R, so we should replace that with ”NA”s. In fact, we actually read in the whole
dataframe as ”character”. The apply repeats the mode function across the columns of
dat:

> apply(dat, 2, mode)

species sex svl mass tail

"character" "character" "character" "character" "character"

regen forel hindl headl lamn

11.1. RAW DATA TO ”CURATED”DATA 105

"character" "character" "character" "character" "character"

food island ecomorph

"character" "character" "character"

Now we need to replace the ”.”and convert the the appropriate columns to mode numeric.

> dat[dat=='.'] <- NA

Also, we want to use only adult males and females, and not juveniles, so exclude anything
that is not sex ”m” or ”f”:

> dat <- dat[dat$sex %in% c('m', 'f'),]

The ”regen” column is an indicator variable for regenerated tails, which are not a good
indication of adult tail size. So we want to look at regen, and if it is ”r”, we want to
remove those tail measurements, replacing them with NA:

> dat$tail[dat$regen == "r"] <- NA

Check that we did what we wanted to do (only printing a few rows on paper):

> dat[c("regen", "tail")]

regen tail

72 r <NA>

96 <NA> 77.0

105 r <NA>

113 <NA> 84.0

114 r <NA>

115 <NA> 82.0

We want the numeric data to have mode numeric so let’s use:

> dat.num <- dat[c('svl', 'mass', 'tail', 'forel', 'hindl', 'headl', 'lamn')]
> dat.num <- as.data.frame(apply(dat.num, 2, as.numeric))

> apply(dat.num, 2, mode)

svl mass tail forel hindl headl lamn

"numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"

106 CHAPTER 11. ALL ABOUT DATA

11.1.6 Getting statistics by species and sex

It is standard to use log-transformation in morphometrics. There are several reasons:
(1) the data are usually not normally distributed (or, rather, the ”errors” from any sta-
tistical model are not normally distributed), and log-transformation improves this. (2)
Organisms tend to follow logistic growth curves, and species tend to follow non-allometric
scaling patterns. Log transformation tends to linearize these non-linear trends, reducing
the size of the very large and increase the size of the very small. (3) Some morphometric
features scale multiplicatively with one another. For example, mass scales with the cube
of length. Log-transformation makes these multiplicative relationships additive. Take a
look at the plot of SVL versus MASS:

> op <- par(no.readonly = TRUE)

> par(mfrow=c(1,2))

> with(dat.num, plot(svl, mass, xlab="SVL", ylab="Mass"))

> with(dat.num, plot(log(svl), log(mass), xlab="logSVL", ylab="logMass"))

> par(op)

●●●●●
●

●
●

●
●

●

●

●

●

●●
●●

●
●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●
●
●●●●●

●●●●

●●●●●
●

●

●
●●●●●●

●●●
●

●
●●

●●●●●

●

●

●●
●

●

●●●

●●●●●●● ●●●●●●●●●●

●●●●●●●
●

●

●

●●●●

●●●●●●

●
●

●

40 60 80 120

0
10

20
30

40
50

SVL

M
as

s

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●
●

●
●●

●●

●

●

●

●
●●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●●●

●
●
●
●

● ●

●

●

●

●
●

●

●●
●

●

●

●●

●●●
●●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

3.6 4.0 4.4 4.8

0
1

2
3

4

logSVL

lo
gM

as
s

11.1. RAW DATA TO ”CURATED”DATA 107

Let’s log-transform the data, and then get the means, sample size, and standard devia-
tions by species and sex. The aggregate function is an apply method, that is it operates
on the matrix dat.num all at once, but it groups observations by some grouping variable
first. In this case, species and sex.

> dat.mean <- aggregate(log(dat.num), list(species=dat$species, sex=dat$sex),

+ mean, na.rm=T)

> dat.sd <- aggregate(log(dat.num), list(species=dat$species, sex=dat$sex),

+ function(x) {if (all(is.na(x))) return(NA) else return(sd(x, na.rm=T))})

If we are interested in sexual dimorphism, then we will need to reshape our data. We
want male and female observations to be matched by secies, so that we can take the ratio
of male size to female size, for example.

> dd <- split(dat.mean, dat.mean$sex)

> fems <- dd[[1]]

> mals <- dd[[2]]

> sexes_sf <- merge(fems, mals, by="species", suffixes=c(".f", ".m"))

sexes_sf is a short-fat representation of the male and female data. We could then go
through and subtract svl.m - svl.f, and so on, variable by variable. Alternatively, since R
by default performs performs matrix operations element by element, and we know that
the two matrices have exactly the same structure, we can simply subtract:

> sexdim <- mals[-(1:2)] - fems[-(1:2)] # computes male larger dimorphism value

Limit to the five main variables.

Workarounds for broken code

• write work-around code and place it before every instance of the broken function

• fix()

• write a work-around function in the global environment by the same name

In R version 2.6.2, the na.rm option in sd used to return an NA if there were no obser-
vations in a particular group (since sd is not defined for zero observations). However, in
2.7.1, the behavior has changed and we get an error that halts execution. Go ahead and
try:

> dat.sd <- aggregate(dat.num, list(species=dat$species, sex=dat$sex), sd, na.rm=T)

108 CHAPTER 11. ALL ABOUT DATA

Now try:

> dat.sd <- aggregate(dat.num, list(species=dat$species, sex=dat$sex),

+ function(x) {if (all(is.na(x))) return(NA) else return(sd(x, na.rm=T))})

The function that I wrote above is a work-around. If all observations are missing, the
function simply returns an NA without sending it to sd. This is an example of placing
a fix right in front of the function call. Not very convenient if we need to use sd again.
We could also use a handy function called fix, which allows us to edit code within a
function, but it is only present for the current session, and disappears after.

> fix(sd)

When a source code window pops up, make the following edits, then close the window
again:

Try the line of code should now work:

> dat.sd <- aggregate(dat.num, list(species=dat$species, sex=dat$sex), sd, na.rm=T)

Another option is to take the square root of the variance, and use a feature of the variance
function to eliminate NA’s:

> sd <- function (x, na.rm=FALSE) sqrt(var(x,na.rm=na.rm,

+ use='pairwise.complete.obs'))
> dat.sd <- aggregate(dat.num, list(species=dat$species, sex=dat$sex),

+ sd, na.rm=T)

Whether you manually remove NA observations or use the square root and variance
option, re-writing the sd function is probably the best option. It will reside in your
global environment, so that will take precedence over the one in the stats package. And
you can source this code (run it) without any manual inputs. fix is useful though,
because it brings up a copy of the code you need to fix and allows you to make edits to
it.

While mean() and sd() have options to remove NA’s (although they may not work
perfectly!), length does not. So we have to write a little function to do this manually
before applying length.

> dat.N <- aggregate(dat.num, list(species=dat$species, sex=dat$sex),

+ function(x) { x<- x[!is.na(x)]; length(x)})

Or more compactly:

11.1. RAW DATA TO ”CURATED”DATA 109

> dat.N <- aggregate(dat.num, list(species=dat$species, sex=dat$sex),

+ function(x) { length(x[!is.na(x)])})

Notice that with apply-like functions, which expect the name of a function to apply as a
parameter, if you need to modify the input in any way or to do more than one step, you
must write a little function.

Save all of our cleaned up data files in an external R dataset:

> save(dat, dat.mean, dat.sd, dat.N, file="Rdata/anolis_dat.rda")

110 CHAPTER 11. ALL ABOUT DATA

Chapter 12

A Small Tour of Some Multivariate
Methods in R

Note: You will need to install the package candisc to do the analyses at the end of the
chapter.

Most of us have some multivariate data that we would like to explore. After we have gone
through the task of making bivariate plots, checking for errors in the data, and finalizing
the raw data, it is time to start looking for patterns and exploring.

The first step you will often think about is do you have to log-transform your data?
Or do some other transformation? You may need to, for example, if you are doing
morphometrics and have a lot of size variation. You may also expect your data to follow
a power law, in which case a log-transformation will make the data linear. For example,
things that scale with body size tend to have the form:

Y = aMassb

log(Y) = log(a) + b× log(Mass)

Will you want to do an analysis of the data along with a size-corrected dataset? If
shape variation is interesting for your data (i.e., do they differ in shape when we control
for differences in size, or are they relatively larger or smaller?), then you may want to
find some sort of size-adjustment. Popular methods include regressing against size, PCA
analysis excluding PC1, shear or Procrustes methods, and ratios with size. There is a
huge wealth of literature on size and how to analyze shape.

Now you are ready to begin. Often we have many variables measured and we suspect
that many of the variables are collinear (or correlated) so that many of them contain the
same or similar information. To summarize the variation, we may want to do a Principal
Components Analysis.

111

112 CHAPTER 12. A SMALL TOUR OF SOME MULTIVARIATE METHODS IN R

12.1 Principal Components Analysis

PCA is an ordination method that is useful to explore patterns of variation in the data.
When variables are correlated (or non-independent), PCA finds linear combinations of
the original data that summarize most of the variation. It is therefore very useful for
reducing the number of variables to a few most important axes of variation.

It produces a number of Principal Component axes (the same number as the number of
original variables). The first PC axis is along the direction of greatest variation in the
data. The second PC axis is orthogonal (perpendicular) to the first, and in the direction
of the next greatest source of variation in the data. The third is orthogonal to the first
and second, etc. and so on. Because all of the axes are orthogonal to one another, they
summarize independent variation.

Some things to look for in PC analysis: The loadings of the variables on the PC axes
show how much each variable is correlated with that PC axis. The magnitude of the
loading indicates how strong the correlation is, and the sign indicates the direction. The
sign of the loading is only informative if variables load with different signs on the same
PC axis. For example if variable A and B load positively with PC 2, and variable C
loads negatively, this is often interpreted as varying along PC2 in an increasing direction
indicating larger A and B but smaller C. In a morphological analysis, the first PC axis
often loads positively and nearly equally on all variables, and is therefore considered to
indicate size. PC1 also typically explains a large fraction of the variation.

The amount of variation each PC axis explains is called the proportion of variance ex-
plained. It is usually expressed as a percent or a fraction. It is not uncommon in
morphological analysis for PC1 to explain 90% of the variation in the data.

It is important to note, however, that the amount of variation does not necessarily indi-
cate it’s importance. Many ecological associations or functionally significant variation is
reflected in shape variation, which as we said may be only 10% of the variation. However,
this might be very functionally relevant. Size may vary a lot, but it might be whether or
not you have very long legs relative to your size that tells us if you are a good runner.
Long legs (in an absolute sense) may not make you a great runner if you are actually
huge in size, so that relative to your body length, your legs are actually relatively short.
So one thing to keep in mind is that you often will use only 3 axes, even though you
have 10 or more variables. If you have managed to capture 90 or 95% of the variation
with the first three variables (sometimes even more), you’re probably in great shape. It’s
a tradeoff between keeping the analysis and interpretation manageable, and keeping all
the variation in the data. Usually the minor axes have less than 1% of the variation,
and are usually not interesting even if you were to keep them. Anyway, to conclude this
paragraph, you may want to do a PC analysis on the data with size included, and then
do a second analysis on the size-adjusted data (shape). Another strategy is to do a PC
analysis on the data with size, and then leave out PC1 in downstream analyses of ”shape”.

12.1. PRINCIPAL COMPONENTS ANALYSIS 113

Let’s do a PC analysis on Fisher’s Iris data, which is a famous multivariate dataset build
into R.

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

There are four measurements of sepal and petal length and width, along with species for
three species of iris. Fifty individuals are measured for each iris species.

PC analysis in R uses the princomp function. You can either specify the columns of the
data to do a PC analysis, or use the formula representation (with no response variables).
A tilde with a dot indicates all variables, and you can exclude columns with a minus sign
as usual. You should only put continuous variables into a PC analysis. So in the iris
data, we can exclude species with the minus sign:

> pc.iris <- princomp (~ .-Species, data=iris, scores=T)

We see the first two PC axes explain more than 97% of the variation, with PC1 explaining
92%, and PC2 5%. Because there are four original variables, we have two more PC axes
but they only explain 1.7% and 0.5% of the variation and we will ignore them.

> summary(pc.iris)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 2.0494032 0.49097143 0.27872586 0.153870700

Proportion of Variance 0.9246187 0.05306648 0.01710261 0.005212184

Cumulative Proportion 0.9246187 0.97768521 0.99478782 1.000000000

We can see how the PC axes reflect the original variables by using the loadings accessor
function:

> loadings(pc.iris)

114 CHAPTER 12. A SMALL TOUR OF SOME MULTIVARIATE METHODS IN R

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4

Sepal.Length 0.361 -0.657 -0.582 0.315

Sepal.Width -0.730 0.598 -0.320

Petal.Length 0.857 0.173 -0.480

Petal.Width 0.358 0.546 0.754

Comp.1 Comp.2 Comp.3 Comp.4

SS loadings 1.00 1.00 1.00 1.00

Proportion Var 0.25 0.25 0.25 0.25

Cumulative Var 0.25 0.50 0.75 1.00

PC1 reflects variation primarily in petal length as evidenced by it’s high correlation
(0.857), and to a lesser extent by sepal length and petal width. PC2 indicates variation
in sepal width, as well as additional variation in sepal length. Petal length loads in
the opposite direction and thus would decrease as sepal length and width increased,
but the correlation value is rather low (0.173). PC3 actually shows a trade-off between
sepal length and both sepal width and petal width (with all loadings having similar
magnitudes), but it explains very little of the overall variation.

The scores are the values of each datapoint along the PC axes in PC space. It is an
element of pc.iris$scores

> head(pc.iris$scores)

Comp.1 Comp.2 Comp.3 Comp.4

1 -2.684126 -0.3193972 -0.02791483 0.002262437

2 -2.714142 0.1770012 -0.21046427 0.099026550

3 -2.888991 0.1449494 0.01790026 0.019968390

4 -2.745343 0.3182990 0.03155937 -0.075575817

5 -2.728717 -0.3267545 0.09007924 -0.061258593

6 -2.280860 -0.7413304 0.16867766 -0.024200858

We can access the PC scores, but it’s long. So for convenience let’s save it as something
shorter.

> pc1 <- pc.iris$scores[,1]

> pc2 <- pc.iris$scores[,2]

> pc3 <- pc.iris$scores[,3]

> plot(pc2 ~ pc1, col=iris$Species, cex=2, pch=16)

12.1. PRINCIPAL COMPONENTS ANALYSIS 115

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●
●

●

●
●●

●

●

●●

●
●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

−3 −2 −1 0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

pc1

pc
2

We can see that there are three distinct groups of points. PC1 seems to contribute the
most to separating the species, whereas PC2 seems to reflect variation within species.

One important point to note is that the axes should be scaled to match each other. One
unit on the X axis should occupy the same length of graph as one unit on the Y axis,
otherwise the plot will be visually deceptive with regard to how much variation each axis
has. Here is how we should scale the Y-axis in order to match the X-axis. Now you can
see what the meaning of 97% of the variation being along PC1 is!

> plot(pc2 ~ pc1, col=iris$Species, cex=2, pch=16, ylim=c(-3, 4))

116 CHAPTER 12. A SMALL TOUR OF SOME MULTIVARIATE METHODS IN R

●

●●●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●
●●●

● ●●
●
●

●●

●●

●
●
●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●●

●●
●●

●● ●●
●

●
●●

● ●●

●
●

●●
●●

●
●

●

●
●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●● ●

● ●

●

●●
●

●

●●
●

●
●

●

●

●●●

●
●●

●

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

pc1

pc
2

What about PC3? It had only 1.7% of the variation.

> plot(pc3 ~ pc1, col=iris$Species, cex=2, pch=16, ylim=c(-3, 4))

12.1. PRINCIPAL COMPONENTS ANALYSIS 117

●
●

●●● ●●
●●
●●●●

●
●

●●● ●
●

●
●●

●●
●
●●●

●●●
●●
●●●

●● ●●
●

● ●●
●
●●●●

●
●

●● ●
● ●●

●

●

●
●

●

●●
●

●

●
●

●

●

● ●●●●
●

●
●

●●● ●
●

●●

●
●

●
●● ●
●● ●●●

●
● ●

●

●
●

● ●

●

●

●●

●●
● ●

●
● ●

● ●

●●

●
●

●

●
●

●
●
● ●

● ●
●

●
● ● ●

●

●●
●

●
●

● ●
●

●
●

●

●
●

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

pc1

pc
3

> plot(pc3 ~ pc2, col=iris$Species, cex=2, pch=16, ylim=c(-3, 4), xlim=c(-3, 4))

118 CHAPTER 12. A SMALL TOUR OF SOME MULTIVARIATE METHODS IN R

●
●
●●●● ●

● ●
●● ●
●

●
●

● ● ●●
●
●
●●

●●
●

●●●
●●●

●●
●●●

● ●●●
●

●●●
●

● ●● ●
●

●
● ●●

●● ●
●

●

●
●

●

●●
●

●

●
●
●

●

●●●●●
●
●

●
● ●●●
●
●●

●
●

●
●●●

● ●●●●
●

●●

●

●
●

●●

●

●

● ●

● ●
●●

●
●●

●●

● ●

●
●

●

●
●

●
●
●●

●●
●

●
● ●●

●

●●
●

●
●

●●
●
●

●
●

●
●

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

pc2

pc
3

So we see that most of the separation is achieved along PC1, and we can separate the
groups pretty well if we just use PC1 with PC2 or PC3. We can see if the separation is
significant using MANOVA:

> manova.iris <- manova(cbind(pc1, pc2, pc3) ~ Species, data=iris)

We obtain the multivariate significance test (differences amongst species) using:

> summary(manova.iris)

Df Pillai approx F num Df den Df Pr(>F)

Species 2 1.1756 69.402 6 292 < 2.2e-16 ***

Residuals 147

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Or we can also see results using Wilks’ lambda:

12.1. PRINCIPAL COMPONENTS ANALYSIS 119

> summary(manova.iris, test="Wilks")

Df Wilks approx F num Df den Df Pr(>F)

Species 2 0.024809 258.53 6 290 < 2.2e-16 ***

Residuals 147

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

And get univariate statistics here:

> summary.aov(manova.iris)

Response pc1 :

Df Sum Sq Mean Sq F value Pr(>F)

Species 2 585.77 292.886 973.27 < 2.2e-16 ***

Residuals 147 44.24 0.301

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response pc2 :

Df Sum Sq Mean Sq F value Pr(>F)

Species 2 4.986 2.49300 11.756 1.835e-05 ***

Residuals 147 31.172 0.21205

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response pc3 :

Df Sum Sq Mean Sq F value Pr(>F)

Species 2 1.2578 0.62892 8.8934 0.0002259 ***

Residuals 147 10.3954 0.07072

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

By comparing results we see that they are actually pretty well separated along each PC
axis, with no real improvement gained by using a multivariate method. I should find
another example!

Note: You should decide whether to do PCA using covariance matrices or correlation
matrices. The default in R is covariance matrices, and this will preserve the original scale
of the data. If we use correlation matrices, then each variable is allowed to contribute
equally, irrespective of how wide the range of values within each variable (it’s like they’re
all standardized first). So you should only use covariances when all measurements are in
the same units, for example all lengths in same units, and it makes sense to relate the
magnitude of variation in one to another. Otherwise use correlation matrices.

120 CHAPTER 12. A SMALL TOUR OF SOME MULTIVARIATE METHODS IN R

> pc.iris.cor <- princomp (~ .-Species, data=iris, scores=T, cor=T)

> summary(pc.iris.cor)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 1.7083611 0.9560494 0.38308860 0.143926497

Proportion of Variance 0.7296245 0.2285076 0.03668922 0.005178709

Cumulative Proportion 0.7296245 0.9581321 0.99482129 1.000000000

> loadings(pc.iris.cor)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4

Sepal.Length 0.521 -0.377 0.720 0.261

Sepal.Width -0.269 -0.923 -0.244 -0.124

Petal.Length 0.580 -0.142 -0.801

Petal.Width 0.565 -0.634 0.524

Comp.1 Comp.2 Comp.3 Comp.4

SS loadings 1.00 1.00 1.00 1.00

Proportion Var 0.25 0.25 0.25 0.25

Cumulative Var 0.25 0.50 0.75 1.00

You can see that the picture we get is a little different. Now that we use correlation
matrices, the dominance of the lengths are reduced (the petals and sepals are much more
variable in length than in width). You should go through the analysis yourself.

12.2 Canonical Discriminant Analysis

The PCA does not at all account for group structure. When we have multiple groups, we
sometimes want to control for within-group structure. One reason is that if we adjust for
within-group structure, the groups will be better separated. Another is that the directions
of within-group differences might be slightly different than the between-group differences,
and we don’t want to blend them together because they have different biological meanings.
(In this view, the within-group variance is usually the less-interesting portion, and we
really are interested in studying the between-group variance).

Another reason to do canonical discriminant analysis is to obtain scores as in PCA to
do further analysis. It just produces scores accounting for group structure, so it is like
a multi-group PCA. For example, I used this technique to produce a multivariate multi-
group ordination in my studies of sexual dimorphism amongst multiple species. I allowed

12.2. CANONICAL DISCRIMINANT ANALYSIS 121

each species and sex to be a different group, and then tested to see if ecomorphs clustered
together.

To do this analysis, you need to install the package candisc. And produce a multivariate
model as in the manova example above.

> require(candisc)

> iris.multiv <- lm(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) ~ Species, data=iris)

> iris.can <- candisc(iris.multiv, term="Species")

> iris.can

Canonical Discriminant Analysis for Species:

CanRsq Eigenvalue Difference Percent Cumulative

1 0.96987 32.19193 31.907 99.12126 99.121

2 0.22203 0.28539 31.907 0.87874 100.000

Test of H0: The canonical correlations in the

current row and all that follow are zero

LR test stat approx F num Df den Df Pr(> F)

1 0.02344 403.82 4 292 < 2.2e-16 ***

2 0.77797 41.95 1 147 1.32e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(iris.can, col=iris$Species)

Vector scale factor set to 8

122 CHAPTER 12. A SMALL TOUR OF SOME MULTIVARIATE METHODS IN R

●

● ●

1.0 1.5 2.0 2.5 3.0

2.
23

6
2.

24
0

2.
24

4
2.

24
8

Index

gu
es

se
s

So you can see that by accounting for within-species variation, we get better separation of
species. Again, we see the greatest separation along Can1. But interestingly, we see that
three of the variables are contributing the most to Can1 (but all are highly correlated).

You can see the loadings on the original variables, as well as the percent variance explained
using the following code:

> iris.can$structure

Can1 Can2

Sepal.Length 0.7918878 0.21759312

Sepal.Width -0.5307590 0.75798931

Petal.Length 0.9849513 0.04603709

Petal.Width 0.9728120 0.22290236

> iris.can$eigenvalues

[1] 3.219193e+01 2.853910e-01 8.276011e-16 7.355228e-16

12.2. CANONICAL DISCRIMINANT ANALYSIS 123

> iris.can$pct

[1] 9.912126e+01 8.787395e-01 2.548243e-15 2.264727e-15

Ninetly-nine percent of the variance is explained by Can1, which is itself dominated by
Petal length and width (.98 and .97), and also with a strong contribution by sepal length
(.79). Sepal width provides a contribution in the opposite direction but its correlation
value is less (-0.53). We can get most of the separation between species along simply
Can1. The scores of each individual in Can space is given in iris.can$scores.

124 CHAPTER 12. A SMALL TOUR OF SOME MULTIVARIATE METHODS IN R

Chapter 13

Answers to Exercises – Creating
Data Objects

Practice

1. Create a dataset with simulated data using rnorm().

(a) Simulate 21 random data points drawn from a normal distribution (create a
numeric vector), and save it in the variable “y”. Create a second set of 21
points and save it as “y1”.

> y <- rnorm(21)

> y1 <- rnorm(21)

> y

[1] 0.29083371 -0.73099247 1.87604553 0.03029000 -0.43811617 0.27508761

[7] 1.54777706 0.16939718 -1.04787823 1.22163054 1.29919395 -1.11229364

[13] -1.08301087 -1.38131233 -0.74087168 1.10387956 1.43960280 3.05686922

[19] -0.51158102 -0.46746532 0.45442855

> y1

[1] 0.524493420 -0.506056725 1.421076163 1.427837349 -0.001765432

[6] 0.003686001 1.833804669 -0.152058484 1.268763349 0.145833684

[11] -1.515643626 0.023458920 -0.636832812 0.117446194 -1.488938571

[16] 0.898151084 -0.212672558 -0.118243333 -0.477678434 -1.739092961

[21] 1.402590073

(b) Create a treatment vector with levels “low”, “med”, and “high”, save it as a
factor.

> treatment <- factor(c("low", "med", "high"))

> treatment

125

126 CHAPTER 13. ANSWERS TO EXERCISES – CREATING DATA OBJECTS

[1] low med high

Levels: high low med

(c) Our treatment has numeric values also, so create a numeric vector with the
values 2, 4, 8, save it as x.

> x <- c(2, 4, 8)

> x

[1] 2 4 8

(d) Create a species vector with seven names.

> species <- LETTERS[1:7]

> species

[1] "A" "B" "C" "D" "E" "F" "G"

(e) Create a matrix with y in the first column and x in the second column, save
it as dat.matrix.

> dat.matrix <- cbind(y, x)

> dat.matrix

y x

[1,] 0.29083371 2

[2,] -0.73099247 4

[3,] 1.87604553 8

[4,] 0.03029000 2

[5,] -0.43811617 4

[6,] 0.27508761 8

[7,] 1.54777706 2

[8,] 0.16939718 4

[9,] -1.04787823 8

[10,] 1.22163054 2

[11,] 1.29919395 4

[12,] -1.11229364 8

[13,] -1.08301087 2

[14,] -1.38131233 4

[15,] -0.74087168 8

[16,] 1.10387956 2

[17,] 1.43960280 4

[18,] 3.05686922 8

[19,] -0.51158102 2

[20,] -0.46746532 4

[21,] 0.45442855 8

(f) Create a data frame with species, x, treatment, y and y1, save as dat. Why
can’t you make a matrix with these columns?

> dat <- data.frame(species, x, treatment, y, y1)

127

(g) Make a bivariate plot of the numeric value of the treatment (x) versus the
response (y). You may want to check the help documentation for ”plot”. You
will have to select the columns of the data frame.

> plot(datx, daty)

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

2 3 4 5 6 7 8

−
1

0
1

2
3

dat$x

da
t$

y

(h) Make a plot on the treatment as factor versus the response. What is the
difference between these two plots?

> plot(dat$treatment, dat$y) # scatterplot vs boxplot

128 CHAPTER 13. ANSWERS TO EXERCISES – CREATING DATA OBJECTS

high low med

−
1

0
1

2
3

(i) Is the factor displayed in the plot in the order that makes sense? If not, fix
this by applying factor to the treatment column of dat again, but this time
specifying the levels vector with names of the levels in the order you want.
You may want to look at the help page for factor. Plot it again.

> dat$treatment <- factor(dat$treatment, levels=c("low", "med", "high"))

> plot(dat$treatment, dat$y)

> dat

species x treatment y y1

1 A 2 low 0.29083371 0.524493420

2 B 4 med -0.73099247 -0.506056725

3 C 8 high 1.87604553 1.421076163

4 D 2 low 0.03029000 1.427837349

5 E 4 med -0.43811617 -0.001765432

6 F 8 high 0.27508761 0.003686001

7 G 2 low 1.54777706 1.833804669

8 A 4 med 0.16939718 -0.152058484

9 B 8 high -1.04787823 1.268763349

10 C 2 low 1.22163054 0.145833684

129

11 D 4 med 1.29919395 -1.515643626

12 E 8 high -1.11229364 0.023458920

13 F 2 low -1.08301087 -0.636832812

14 G 4 med -1.38131233 0.117446194

15 A 8 high -0.74087168 -1.488938571

16 B 2 low 1.10387956 0.898151084

17 C 4 med 1.43960280 -0.212672558

18 D 8 high 3.05686922 -0.118243333

19 E 2 low -0.51158102 -0.477678434

20 F 4 med -0.46746532 -1.739092961

21 G 8 high 0.45442855 1.402590073

low med high

−
1

0
1

2
3

(j) Let’s make a scatterplot (plot(y, y1)) to see if there is any structuring in the
data (eventually with respect to the treatment levels – the rest of this exercise
is in the chapter on Workhorse Functions of Data Analysis). While we’re at
it, let’s make it prettier. Change the symbols to solid circles by adding the
optional parameter pch=16, and the points bigger by cex=2. Change the color
to red using col="red".

130 CHAPTER 13. ANSWERS TO EXERCISES – CREATING DATA OBJECTS

> plot(y, y1, pch=16, cex=2, col="red")

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

y

y1

(k) Now let’s make some data which should differ. For the ”low” treatment, sim-
ulate y and y1 as normally distributed data with mean = -2 and sd=.5, and
”high” as mean=5, and sd=3. Remake the dataframe.

> y <- c(rnorm(7, mean=-2, sd=0.5), rnorm(7), rnorm(7, mean=5, sd=3))

> y1 <- c(rnorm(7, mean=-2, sd=0.5), rnorm(7), rnorm(7, mean=5, sd=3))

> y

[1] -1.8288029 -1.7884820 -2.7364176 -2.3429563 -1.1901773 -1.9428021

[7] -1.4607354 -1.1911728 0.9092057 -1.1247820 0.2706827 2.1220359

[13] -1.0355536 0.8118809 1.6833277 3.0841090 4.2227286 3.4519807

[19] 7.9920123 8.3880632 1.6813836

> y1

[1] -1.8899794 -1.6375741 -1.6448559 -1.9921662 -1.7377710 -1.3265830

[7] -1.7270497 1.6028813 1.0228623 -1.3234996 0.4263121 -0.0610781

[13] -0.4517876 -0.7372885 7.7446775 9.7606643 7.2982633 7.8386139

[19] 1.0057862 2.5540743 9.4384401

131

> dat <- data.frame(species, x, treatment=factor(rep(c("low", "med",

+ "high"), each=7), levels=c("low", "med", "high")), y, y1)

> dat

species x treatment y y1

1 A 2 low -1.8288029 -1.8899794

2 B 4 low -1.7884820 -1.6375741

3 C 8 low -2.7364176 -1.6448559

4 D 2 low -2.3429563 -1.9921662

5 E 4 low -1.1901773 -1.7377710

6 F 8 low -1.9428021 -1.3265830

7 G 2 low -1.4607354 -1.7270497

8 A 4 med -1.1911728 1.6028813

9 B 8 med 0.9092057 1.0228623

10 C 2 med -1.1247820 -1.3234996

11 D 4 med 0.2706827 0.4263121

12 E 8 med 2.1220359 -0.0610781

13 F 2 med -1.0355536 -0.4517876

14 G 4 med 0.8118809 -0.7372885

15 A 8 high 1.6833277 7.7446775

16 B 2 high 3.0841090 9.7606643

17 C 4 high 4.2227286 7.2982633

18 D 8 high 3.4519807 7.8386139

19 E 2 high 7.9920123 1.0057862

20 F 4 high 8.3880632 2.5540743

21 G 8 high 1.6813836 9.4384401

(l) Make boxplots of species vs. y and species vs. y1. Why would you make this
plot?

> plot(dat$species, dat$y) # differences among species?

132 CHAPTER 13. ANSWERS TO EXERCISES – CREATING DATA OBJECTS

A B C D E F G

−
2

0
2

4
6

8

> plot(dat$species, dat$y1)

133

A B C D E F G

−
2

0
2

4
6

8
10

134 CHAPTER 13. ANSWERS TO EXERCISES – CREATING DATA OBJECTS

Chapter 14

Answers to Exercises – The
Workhorse Functions of Data
Manipulation

Practice

1. Recall from the chapter on Data Objects that we were simulating data in different
treatment groups, and wanting to visualize the groups. Now that we know how to
index and subset, we can use the points function to add different colored points
to the plot for different groups.

(a) Now let’s make some data which should differ. For the ”low” treatment, sim-
ulate y and y1 as normally distributed data with mean = -2 and sd=.5, and
”high” as mean=5, and sd=3. Remake the dataframe.

> species <- LETTERS[1:7]

> x <- c(2, 4, 8)

> y <- c(rnorm(7, mean=-2, sd=0.5), rnorm(7), rnorm(7, mean=5, sd=3))

> y1 <- c(rnorm(7, mean=-2, sd=0.5), rnorm(7), rnorm(7, mean=5, sd=3))

> y

[1] -1.39039058 -1.72151685 -2.22420890 -1.55894636 -2.89591841 -1.52939747

[7] -2.48569947 0.35565222 0.08676244 -0.17269100 0.38304673 -1.25836260

[13] -0.90697300 -0.38370823 3.42139889 3.99650326 7.11672665 6.20038054

[19] 6.44302123 -0.56430891 5.33022433

> y1

[1] -1.38024429 -2.19688465 -1.78252098 -1.32358065 -1.78243836 -1.91741911

[7] -2.76144918 -0.01531455 -0.10303655 0.71433332 -0.68143340 -1.72629590

[13] -1.16873921 0.18668455 6.38568403 11.80470115 8.70903520 -1.78316658

[19] 4.20823905 5.63218438 6.30643576

135

136CHAPTER 14. ANSWERS TO EXERCISES – THEWORKHORSE FUNCTIONS OF DATAMANIPULATION

> dat <- data.frame(species, x, treatment=factor(rep(c("low", "med",

+ "high")), levels=c("low", "med", "high")), y, y1)

> dat

species x treatment y y1

1 A 2 low -1.39039058 -1.38024429

2 B 4 med -1.72151685 -2.19688465

3 C 8 high -2.22420890 -1.78252098

4 D 2 low -1.55894636 -1.32358065

5 E 4 med -2.89591841 -1.78243836

6 F 8 high -1.52939747 -1.91741911

7 G 2 low -2.48569947 -2.76144918

8 A 4 med 0.35565222 -0.01531455

9 B 8 high 0.08676244 -0.10303655

10 C 2 low -0.17269100 0.71433332

11 D 4 med 0.38304673 -0.68143340

12 E 8 high -1.25836260 -1.72629590

13 F 2 low -0.90697300 -1.16873921

14 G 4 med -0.38370823 0.18668455

15 A 8 high 3.42139889 6.38568403

16 B 2 low 3.99650326 11.80470115

17 C 4 med 7.11672665 8.70903520

18 D 8 high 6.20038054 -1.78316658

19 E 2 low 6.44302123 4.20823905

20 F 4 med -0.56430891 5.63218438

21 G 8 high 5.33022433 6.30643576

(b) Let’s differentially color the “high”, “medium”, and “low” points. First set up
the plot window without any points by plotting y, y1 with the plot parameter
type="n". Then select only the ”high” points by subsetting. You’ll want
to make an index vector to choose only the points you want. Then use the
points() function (which has the same form as the plot() function, but
only adds points to an existing plot. Choose three different colors for each
treatment level and plot all the data. Is there any patterning in y, y1?

> plot(y, y1, type="n")

> points(y[dat$treatment=="high"], y1[dat$treatment=="high"],

+ pch=16, cex=2, col="red")

> points(y[dat$treatment=="med"], y1[dat$treatment=="med"],

+ pch=16, cex=2, col="yellow")

> points(y[dat$treatment=="low"], y1[dat$treatment=="low"],

+ pch=16, cex=2, col="blue")

137

−2 0 2 4 6

0
5

10

y

y1

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

(c) Ooops! The data are actually supposed to be blocked by treatment (the first
seven rows correspond to low, the second 7 correspond to med, etc.) Can you
remake the dataframe keeping the y and y1 in the same position, but fixing
the treatment?

> dat <- data.frame(species, x, treatment=factor(rep(c("low", "med",

+ "high"), each=7), levels=c("low", "med", "high")), y, y1)

> dat

species x treatment y y1

1 A 2 low -1.39039058 -1.38024429

2 B 4 low -1.72151685 -2.19688465

3 C 8 low -2.22420890 -1.78252098

4 D 2 low -1.55894636 -1.32358065

5 E 4 low -2.89591841 -1.78243836

6 F 8 low -1.52939747 -1.91741911

7 G 2 low -2.48569947 -2.76144918

8 A 4 med 0.35565222 -0.01531455

9 B 8 med 0.08676244 -0.10303655

10 C 2 med -0.17269100 0.71433332

138CHAPTER 14. ANSWERS TO EXERCISES – THEWORKHORSE FUNCTIONS OF DATAMANIPULATION

11 D 4 med 0.38304673 -0.68143340

12 E 8 med -1.25836260 -1.72629590

13 F 2 med -0.90697300 -1.16873921

14 G 4 med -0.38370823 0.18668455

15 A 8 high 3.42139889 6.38568403

16 B 2 high 3.99650326 11.80470115

17 C 4 high 7.11672665 8.70903520

18 D 8 high 6.20038054 -1.78316658

19 E 2 high 6.44302123 4.20823905

20 F 4 high -0.56430891 5.63218438

21 G 8 high 5.33022433 6.30643576

(d) Make three plots: boxplot of treatment vs. y, treatment vs. y1, and three color
scatterplot of y vs. y1 (treatments should be indicated by different colors).

> plot(dat$treatment, dat$y)

●

low med high

−
2

0
2

4
6

> plot(dat$treatment, dat$y1)

139

●

●

low med high

0
5

10

> plot(y, y1, type="n")

> points(y[dat$treatment=="high"], y1[dat$treatment=="high"],

+ pch=16, cex=2, col="red")

> points(y[dat$treatment=="med"], y1[dat$treatment=="med"],

+ pch=16, cex=2, col="yellow")

> points(y[dat$treatment=="low"], y1[dat$treatment=="low"],

+ pch=16, cex=2, col="blue")

140CHAPTER 14. ANSWERS TO EXERCISES – THEWORKHORSE FUNCTIONS OF DATAMANIPULATION

−2 0 2 4 6

0
5

10

y

y1

●

●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●
●

● ●
●

2. Matrix reshaping and indexing – This was given for homework so no answers. Sorry!

(a) Create a matrix with the values 1 through 20, filling four rows. Save it as “x”.

(b) What are the attributes of x?

(c) Change it to a matrix with 2 rows and 10 columns by changing its attribute.

(d) Change x to a vector.

(e) Change x to a matrix with four rows, this time filling it by rows rather than
by columns (you may want to check the help page).

(f) Coerce x to a vector again. Is it in the same order as the previous vector?
What does this tell you about R’s default behavior when flattening matrices
to vector?

(g) Create the original x matrix again. Select only the 3rd row, 4th column. What
is it?

(h) Select rows 3 and 4, columns 4 and 5. Print it to the console by using the
print(x) function.

141

(i) Select the first and last rows, first and last columns. Print it.

3. Reading in Data and adding on

(a) Read in the external file bimac.csv in comma separated format. Save it as
“bimac”.

> bimac <- read.csv("Data/bimac.csv")

> bimac

node species size ancestor time OU.LP OU.1 OU.3 OU.4

1 1 <NA> NA NA 0 medium global medium anc

2 2 <NA> NA 1 12 medium global medium anc

3 3 <NA> NA 2 32 small global medium anc

4 4 <NA> NA 3 34 small global medium anc

5 5 <NA> NA 4 36 small global medium anc

6 6 <NA> NA 3 36 small global medium anc

7 7 <NA> NA 1 8 medium global medium anc

8 8 <NA> NA 7 13 medium global medium anc

9 9 <NA> NA 8 18 large global medium anc

10 10 <NA> NA 9 23 large global medium anc

11 11 <NA> NA 10 28 large global medium anc

12 12 <NA> NA 9 28 large global medium anc

13 13 <NA> NA 8 22 medium global medium anc

14 14 <NA> NA 13 26 medium global medium anc

15 15 <NA> NA 14 34 medium global medium anc

16 16 <NA> NA 15 36 medium global medium anc

17 17 <NA> NA 7 28 medium global medium anc

18 18 <NA> NA 17 30 medium global medium anc

19 19 <NA> NA 18 34 medium global medium anc

20 20 <NA> NA 19 36 medium global medium anc

21 21 <NA> NA 20 37 medium global medium anc

22 22 <NA> NA 19 36 medium global medium anc

23 23 po 13.5 2 38 small global small small

24 24 se 14.3 4 38 small global small small

25 25 sc 14.3 5 38 small global small small

26 26 sn 14.2 5 38 small global small small

27 27 wb 14.5 6 38 small global small small

28 28 wa 14.9 6 38 small global small small

29 29 be 23.6 10 38 large global large large

30 30 bn 27.1 11 38 large global large large

31 31 bc 27.9 11 38 large global large large

32 32 lb 28.6 12 38 large global large large

33 33 la 28.8 12 38 large global large large

34 34 nu 21.1 13 38 medium global medium medium

35 35 sa 18.3 14 38 medium global medium medium

142CHAPTER 14. ANSWERS TO EXERCISES – THEWORKHORSE FUNCTIONS OF DATAMANIPULATION

36 36 gb 19.7 15 38 medium global medium medium

37 37 ga 18.8 16 38 medium global medium medium

38 38 gm 19.6 16 38 large global large large

39 39 oc 22.3 17 38 medium global medium medium

40 40 fe 28.4 18 38 medium global medium medium

41 41 li 18.7 20 38 medium global medium medium

42 42 mg 18.9 21 38 medium global medium medium

43 43 md 19.9 21 38 medium global medium medium

44 44 t1 21.3 22 38 medium global medium medium

45 45 t2 21.5 22 38 medium global medium medium

(b) This is a phylogenetic tree and data for the OUCH package. Without going
into details for now, this method allows biologists to specify selective regimes
on branches of the phylogeny, by specifying categories which correspond to
alternative “niches”. This is a body size evolution dataset, and “OU.LP” is a
hypothesis with three size categories. We would like to make three additional
hypotheses. Add additional columns to this dataframe: OU.1 which has values
of “global” for all rows, OU.3 which is the same as OU.LP, except those rows
with “NA” in the species names should get a value of “medium”, and OU.4
which is again similar to OU.LP, except that those rows with “NA” in the
species names get a value of “anc”.

> bimac$OU.1 <- "global"

> bimac$OU.3 <- bimac$OU.LP

> bimac$OU.3[1:22] <- "medium" # or the next way

> bimac$OU.3[is.na(bimac$species)] <- "medium"

> bimac$OU.4 <- as.character(bimac$OU.LP)

> bimac$OU.4[1:22] <- "anc" # or the next way

> bimac$OU.4 <- factor(bimac$OU.4) # to make it a factor again

> bimac

node species size ancestor time OU.LP OU.1 OU.3 OU.4

1 1 <NA> NA NA 0 medium global medium anc

2 2 <NA> NA 1 12 medium global medium anc

3 3 <NA> NA 2 32 small global medium anc

4 4 <NA> NA 3 34 small global medium anc

5 5 <NA> NA 4 36 small global medium anc

6 6 <NA> NA 3 36 small global medium anc

7 7 <NA> NA 1 8 medium global medium anc

8 8 <NA> NA 7 13 medium global medium anc

9 9 <NA> NA 8 18 large global medium anc

10 10 <NA> NA 9 23 large global medium anc

11 11 <NA> NA 10 28 large global medium anc

12 12 <NA> NA 9 28 large global medium anc

13 13 <NA> NA 8 22 medium global medium anc

14 14 <NA> NA 13 26 medium global medium anc

143

15 15 <NA> NA 14 34 medium global medium anc

16 16 <NA> NA 15 36 medium global medium anc

17 17 <NA> NA 7 28 medium global medium anc

18 18 <NA> NA 17 30 medium global medium anc

19 19 <NA> NA 18 34 medium global medium anc

20 20 <NA> NA 19 36 medium global medium anc

21 21 <NA> NA 20 37 medium global medium anc

22 22 <NA> NA 19 36 medium global medium anc

23 23 po 13.5 2 38 small global small small

24 24 se 14.3 4 38 small global small small

25 25 sc 14.3 5 38 small global small small

26 26 sn 14.2 5 38 small global small small

27 27 wb 14.5 6 38 small global small small

28 28 wa 14.9 6 38 small global small small

29 29 be 23.6 10 38 large global large large

30 30 bn 27.1 11 38 large global large large

31 31 bc 27.9 11 38 large global large large

32 32 lb 28.6 12 38 large global large large

33 33 la 28.8 12 38 large global large large

34 34 nu 21.1 13 38 medium global medium medium

35 35 sa 18.3 14 38 medium global medium medium

36 36 gb 19.7 15 38 medium global medium medium

37 37 ga 18.8 16 38 medium global medium medium

38 38 gm 19.6 16 38 large global large large

39 39 oc 22.3 17 38 medium global medium medium

40 40 fe 28.4 18 38 medium global medium medium

41 41 li 18.7 20 38 medium global medium medium

42 42 mg 18.9 21 38 medium global medium medium

43 43 md 19.9 21 38 medium global medium medium

44 44 t1 21.3 22 38 medium global medium medium

45 45 t2 21.5 22 38 medium global medium medium

144CHAPTER 14. ANSWERS TO EXERCISES – THEWORKHORSE FUNCTIONS OF DATAMANIPULATION

Chapter 15

Answers to Exercises – Writing your
own functions

15.1 Exercises

1. Write your own function for calculating a mean of a vector, using only the sum()

and the length() functions. The input should be a vector, and the output is the
mean.

> mymean <- function(x) { # version 1

+

+ xbar <- sum(x) / length(x)

+ return (xbar)

+ }

> mymean <- function(x) { # version 2 don't get so short that you confuse yourself!

+

+ return (sum(x) / length(x))

+ }

> mymean(1:5)

[1] 3

2. Write your own function for calculating the standard error. You can use the sd(),
sqrt(), and the length() functions. The input should be a vector of values.

> myse <- function(x) {

+

+ se <- sd(x) / sqrt(length(x))

+ return (se)

+ }

> myse(1:5)

145

146CHAPTER 15. ANSWERS TO EXERCISES –WRITING YOUROWN FUNCTIONS

[1] 0.7071068

3. Go back to Chapter 7 section 7.6.1. Write a function that will read in the ir-
radiance data, trim it to wavelengths between 300 and 750 nm, and plot the
data. Then use that function to read in files for the different directions: up, for
(forward), left, and right: 20070725_01upirr.txt, 20070725_01forirr.txt,

20070725_01leftirr.txt, 20070725_01rightirr.txt. Your function should take
as input just the file name. Write a script that defines the function and then calls
the function four times, once for each file.

> readirr <- function (ifile = "Data/20070725_01upirr.txt") {

+ # I like to put in a default arguments so it will "go" by itself

+

+ dat <- read.table(file=ifile, skip=17, comment.char=">") # read in

+ names(dat) <- c("lambda", "intensity") #add names

+

+ dat <- dat[dat$lambda >= 300 & dat$lambda <= 750,] # subset wavelengths

+ plot(dat$lambda, dat$intensity)

+ }

> readirr()

> readirr("Data/20070725_01forirr.txt")

> readirr("Data/20070725_01leftirr.txt")

> readirr("Data/20070725_01rightirr.txt")

15.1. EXERCISES 147

●●
●●●●●●
●
●●●●
●
●
●●
●
●●●
●
●●
●
●
●●●●
●
●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●
●●●●●
●●●●●●●●
●●●●●
●●
●●●
●●●●●
●
●●●
●●●●●●●●●●
●●●●
●
●
●●●●
●
●●
●●●●●●●
●●●●●
●●●
●
●●●●●
●
●●●●●●●
●●●
●
●●●●●
●●
●
●●●●
●
●●●●●
●●●●●●●●●
●
●●●
●
●●
●●
●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●
●
●
●●
●●●
●
●
●
●●●●
●●
●●
●●●●●●●●●
●●●●
●●●●●●
●●
●
●●●●●●●
●●●●●
●●●●●●●
●●●●
●●●●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●
●●
●
●●
●●●●●●●
●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●
●●
●
●
●●●●
●
●●
●●●●●●
●●●
●●●
●
●●●
●●
●●●●●●●●●
●●●●●●●
●
●●●
●●
●●●
●●●●
●●
●
●●
●●●●●
●●●●
●●●●●●
●●●●●●●●●●
●●●
●●●
●●
●
●●●●●
●●●●●
●●●●
●●●●●
●
●
●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●
●
●
●●●●●●●●●●
●●●
●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●
●●
●●●●●●
●●
●
●●●●
●
●●●●
●●●●
●●●●●●●●●●
●●
●●●●●●●
●●●
●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●
●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●
●●●●
●

●
●
●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●
●●●●
●●●●●●●●●●
●●●

●●●
●●●●●
●●●●●
●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●
●●●●●●●●
●●●
●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●
●
●●●
●●●●●●●●
●
●●●●●
●
●●
●●●●●●
●
●●●●●●●●●●
●●●●●●●●
●
●
●●●●●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●
●
●●●●
●●●●●●●●
●●●●●●
●
●●●●●●
●●●
●
●●●●●●●
●●●●
●●●●
●●
●
●●
●●●●●
●●●
●
●
●●●●●●●●●●
●●●
●●●
●●●●●●●●●●
●●●●●●
●
●
●●●●●●●

●

●●
●
●●●
●
●
●●●●●
●●●●●
●●●
●●●●●●●●●
●●●●●
●●
●
●●●
●●●●●
●●●●●●●●
●
●●●●●
●●●●
●
●●●●
●
●●●●●
●
●●●

●
●●●●
●●
●●
●●●
●●●
●●
●
●●●●●●●
●
●●●
●
●
●●
●

●

●
●●
●●●●●
●●●
●
●
●
●
●●●
●●
●●
●●●●
●●●●●●●●●
●●●●

●
●●●●●●●●●
●
●●

●
●●
●
●●●●●●
●

●

●
●
●
●●
●

●
●●●●

●

●●
●●●
●●●●

●●●●●●●
●●●
●
●●
●●
●●
●●
●
●●●●●
●●
●●
●
●●●●●●
●●
●
●
●
●●●
●●●●
●
●
●●
●●●
●●
●●
●
●
●
●●●
●●●●●●●●
●
●

●
●●●●
●●●
●●●●●●●
●
●●
●●●●●●

●
●●●
●●●●

●●
●●●●●
●
●●●
●
●●●
●
●●
●
●
●
●●
●
●
●●●●
●●●●
●●●●

●●
●
●●●
●●●
●●●●●
●

●
●●
●

●●●
●
●
●

●

●●●●
●

●●●●
●

●
●●
●
●
●●

●

●●●●
●●
●
●●●●●●
●●●●●

●

●●●
●●
●●●
●●
●
●
●
●●
●●
●●
●

●

●
●
●
●●

●
●●●●●
●
●
●
●●●
●

300 400 500 600 700

0
2

4
6

dat$lambda

da
t$

in
te

ns
ity

4. Now take the function you just made, and add optional arguments for the cut
off values 300 and 750. You may want to trim the data to different values. Try
trimming it to different values and see what happens using your new function.

> readirr <- function (ifile = "Data/20070725_01upirr.txt",

+ start=300, stop=750) { # I like to put in a default so it will "go" by itself

+

+ dat <- read.table(file=ifile, skip=17, comment.char=">") # same

+ names(dat) <- c("lambda", "intensity")

+

+ dat <- dat[dat$lambda >= start & dat$lambda <= stop,] # add start stop

+ plot(dat$lambda, dat$intensity)

+ }

> readirr(start=300, stop=350) # only looking in the UV

	Preliminaries
	Computer Requirements and Installing R
	Installing from source

	R packages
	General R References
	Help! and Useful References
	general R help

	For Folks who get serious about R programming

	R Environment
	Programming Environment
	Why code?
	Reproducible Results
	Customized Analyses
	Improving your Logic

	R Works in RAM
	Parts of the R Environment
	R workspace
	R session and R working directory
	Two special files
	R program directory

	Playing with R for the first time
	Instructions
	R session
	Vectors

	Functions
	Generating Random Deviates
	Building a dataframe

	Save Your History
	Insert Comments
	Exercises

	Finding Help
	When you know the name of the function
	Don't know the name of the function
	Package-specific help

	Creating Data Objects and Plotting
	Data objects
	Simple plotting
	Bivariate plot
	Univariate plot

	What is it?
	Saving your work as R scripts
	Script template
	Writing pdf to file
	History file

	Remember the workspace
	Exercises

	Data Input and Output
	Getting your data into R
	read.csv

	Summary statistics on your data
	merge

	write.csv
	save
	Saving plots
	pdf

	Messier input files
	Input files generated by data loggers

	The Workhorse Functions of Data Manipulation
	Indexing and subsetting
	Vectors
	Matrices and Dataframes
	Lists

	String Matching
	Ordering Data
	Matching
	Merging
	Reshaping R Objects

	Writing your own functions
	Functions are wrappers for code that you want to reuse
	Arguments
	Order of arguments
	Arbitrary numbers of arguments
	Return value
	Looking inside R: functions that are inside packages
	Scope
	Search Paths and Environment
	Exercises

	All About Data
	Raw data to "curated" data
	Reading in fixed width format
	Combining the data into one file
	Adding variables to the data
	Sort by species and sex
	Editing data into R format
	Getting statistics by species and sex
	Workarounds for broken code

	A Small Tour of Some Multivariate Methods in R
	Principal Components Analysis
	Canonical Discriminant Analysis

	Answers to Exercises – Creating Data Objects
	Answers to Exercises – The Workhorse Functions of Data Manipulation
	Answers to Exercises – Writing your own functions
	Exercises

